
DOCTORAL THESIS

SORBONNE UNIVERSITÉ

Speciality: COMPUTER SCIENCE

Presented by

MOHAMED KISSI

to obtain the degree of

Ph.D. of Sorbonne Université

Persistence Optimization

for Data Visualization

Defended on October 28th, 2025, before the committee:

Georges Pierre BONNEAU Professor Grenoble Universities Reviewer

Guillaume LAVOUÉ Professor Ecole Centrale de Lyon Reviewer

Isabelle BLOCH Professor Sorbonne University Examiner

Mathieu CARRIÈRE Research Scientist INRIA Examiner

Joshua A. LEVINE Associate Professor University of Arizona Guest

Julien TIERNY Senior Scientist CNRS Advisor

Sorbonne Université

LIP6 – Laboratoire d’Informatique de Paris 6

UMR 7606 Sorbonne Université – CNRS

4 Place Jussieu – 75005 Paris

The order of names within each group is presented randomly.

I sincerely thank Georges Pierre BONNEAU and Guillaume LAVOUÉ

for dedicating their time to review this thesis and offering invaluable

feedback. My gratitude also extends to the entire jury for their active

participation and commitment throughout the evaluation process.

Julien, je tiens à te remercier sincèrement pour l’encadrement excep-

tionnel dont tu m’as fait bénéficier tout au long de cette thèse. Dès le

premier jour, tu as su m’accompagner, me guider et me prodiguer des

conseils précieux. Ta disponibilité, ton écoute et ta bienveillance ont été

inestimables. Merci pour ta gentillesse et ton soutien constant. Je n’aurais

pas pu espérer un encadrement de thèse aussi enrichissant, à la fois sur le

plan scientifique et humain.

Josh, I warmly thank you for your guidance and support throughout

my thesis.

Je tiens à exprimer ma profonde reconnaissance envers Amaury,

Emeric, Mamy, Loic, Marco, Francesco, Milla, Mattéo, Eve, Keanu,

Sébastien, Sylvain, Thomas et Pierre pour leur précieux soutien, leur

collaboration et leur camaraderie tout au long de ma thèse. Un remer-

ciement tout particulier à Mathieu Pont, dont l’aide inestimable a été

déterminante lors des premières étapes de ce voyage scientifique.

Je souhaite également remercier Thomas, Aminata et Joo-won, que j’ai

eu la chance de connaître durant mon école d’ingénieur.

Réussir, c’est rendre hommage aux sacrifices et à l’amour incondition-

nel de ses parents. J’espère que cette thèse pourra vous honorer et refléter

l’impact de votre soutien dans mon parcours.

Je tiens à exprimer ma gratitude infinie à mes parents, qui ont été ma

force motrice tout au long de ma scolarité. Leur amour et leurs encour-

agements constants m’ont poussé à me dépasser et à croire en mes rêves,

même lorsque cela semblait difficile.

À mes sœurs, je dis un grand merci pour leur soutien indéfectible au

fil des années. Vous m’avez accompagné avec patience et m’avez ouvert

iii

les portes du monde en me faisant découvrir les voyages dès mon plus

jeune âge. Ces expériences ont profondément marqué ma personnalité et

m’ont aidé à grandir. Je remercie mon beau-frère.

Une pensée spéciale va à mon oncle Abdelharim, dont la présence et

les encouragements tout au long de mon parcours scolaire ont été une

source inestimable de motivation. Merci également à Malika et Hamida,

qui ont été des piliers dans ma vie depuis mon enfance, ne manquant

jamais une seule de mes représentations ou événements marquants.

Je souhaite enfin honorer la mémoire de mes grands-parents, qui au-

raient été si heureux de me voir obtenir ce titre. Je me remémore avec

émotion les paroles de ma grand-mère, qui me répétait souvent : « Tu

seras docteur. » Même si elle pensait à la médecine, je suis convaincu

qu’elle serait fière aujourd’hui de me voir obtenir ce doctorat.

iv

First-Author Publications

Journal Papers

A Practical Solver for Scalar Data Topological Simplification

Mohamed Kissi, Mathieu Pont, Joshua A. Levine, Julien Tierny

IEEE Transactions on Visualization and Computer Graphics, 2024

Presented at IEEE VIS 2024

Workshop Papers

Topology Aware Neural Interpolation of Scalar Fields

Mohamed Kissi, Keanu Sisouk, Joshua A. Levine, Julien Tierny

Under review for the IEEE Workshop on Topological Data Analysis and

Visualization (TopoInVis), 2025

v

Contents

Contents vii

1 Introduction 1

1.1 General Context and Motivations 3

1.1.1 Data analysis and visualization 3

1.1.2 Thesis Environment - The TORI Project 3

1.1.3 The Topology ToolKit (TTK) 4

1.2 Problem Formulation . 5

1.3 Contributions . 6

1.4 Outline . 8

2 Theoretical Background 11

2.1 Input data . 13

2.2 Persistence Diagrams . 13

2.3 Wasserstein distance between persistence diagrams . . 15

2.4 Persistence optimization 17

2.5 Neural Networks . 18

2.5.1 Convolutional Neural Networks (CNNs) 18

2.5.2 Normalization Techniques 19

2.5.3 Residual Blocks (ResBlocks) 20

2.5.4 Upsampling Operations 20

2.5.5 Activation Functions . 20

2.5.6 Integration within the Proposed Architecture 21

3 A practical solver for scalar data topological sim-
plification 23

Our Contributions in one Image 25

3.1 Context . 26

3.1.1 Related work . 27

3.1.2 Contributions . 29

3.2 Approach . 30

3.3 Algorithm . 33

vii

3.3.1 Direct gradient descent 33

3.3.2 Fast persistence update 34

3.3.3 Fast assignment update 36

3.4 Results . 37

3.4.1 Quantitative performance 38

3.4.2 Analyzing topologically simplified data 43

3.4.3 Repairing genus defects in surface processing 47

3.4.4 Limitations . 49

3.5 Summary . 50

4 Topology Aware Neural Interpolation of Scalar Fields 53

Our Contributions in one Image 55

4.1 Context . 56

4.1.1 Related work . 57

4.1.2 Contributions . 61

4.2 Approach . 61

4.2.1 Overview . 61

4.2.2 Architecture . 62

4.2.3 Losses . 63

4.2.4 Computational details 65

4.3 Results . 66

4.3.1 Test datasets . 66

4.3.2 Reference approaches 68

4.3.3 Quantitative criteria . 69

4.3.4 Loss influences . 69

4.3.5 Comparisons . 70

4.3.6 Limitations . 72

4.4 Summary . 73

5 Conclusion 77

5.1 Summary of Contributions 78

5.2 Limitations . 79

5.3 Perspectives . 80

Bibliography 85

viii

1Introduction

Contents

1.1 General Context and Motivations 3

1.1.1 Data analysis and visualization 3

1.1.2 Thesis Environment - The TORI Project 3

1.1.3 The Topology ToolKit (TTK) 4

1.2 Problem Formulation . 5

1.3 Contributions . 6

1.4 Outline . 8

As computational resources and acquisition devices are becoming more

efficient and precise, modern datasets are growing in resolution and

level of details. This results in a general growth in the size of datasets

which creates challenges for their storage, processing and analysis. To

address this issue, data reduction is commonly considered, either by em-

ploying lossy compression schemes [Lin14, BRLP19] or by storing re-

duced data representations, which concisely, yet precisely, only encode

the core features of the data, possibly during data production (i.e., in-situ

[BAA+
16, ABG+

15]).

Topological Data Analysis (TDA) [EH09] precisely focuses on the ro-

bust encoding of the structural patterns of a dataset into concise topological

descriptors, whose successful practical applications have been documented

in a variety of domains and contexts [HLH+
16].

Topological descriptors are often used as a mean of data reduction,

typically by storing to disk these descriptors instead of the data itself. For

instance, for time-varying datasets, a typical strategy [BWT+
11, BNP+

21,

FPF+
23] consists in storing the actual data at a low frequency (resulting

in the storage of a small number n of keyframes), while storing topological

1

2 Chapter 1. Introduction

descriptors at a higher frequency (e.g., for a large number N ≫ n of non-

keyframe time steps). Then, the produced descriptors can be directly post-

processed by dedicated statistical frameworks [TMMH14, LCO18, VBT20,

YWM+
19, PVDT22, PVT23, PT24], tailored to the analysis of topological

representations. However, in many scenarios, a complete investigation

might require going back to the original dataset which initially generated

a given topological descriptor, for instance, for further visual inspection,

interpretation and analysis. Then, the following question arises: how can

we reliably “invert” the construction of a topological descriptor? (i.e., retrieve

the dataset which generated it).

This thesis explores these challenges and contributes novel methods at

the intersection of data reduction, topological simplification, and recon-

struction, with the goal of making topological analysis more practical and

impactful for large-scale scientific data.

1.1. General Context and Motivations 3

1.1 General Context and Motivations

1.1.1 Data analysis and visualization

Topological Data Analysis (TDA) [EH09, Zom10] operates at the inter-

section of computer science and applied mathematics, providing generic,

robust, and multi-scale techniques for the extraction, quantification, and

comparison of hidden structural features within complex datasets. It

leverages foundational concepts in topology that are well-established

in the scientific literature and offers a variety of powerful topological

data abstractions, such as critical points [Ban67], persistence diagrams

[ELZ02, BKR14, GVT23], merge [CWSA16, GFJT17, LWW+
24] and con-

tour trees [CSA00, GFJT19a], Reeb graphs [BGSF08, PSBM07, GFJT19b],

and Morse-Smale complexes [GBHP08, RWS11, SN12, GBP19, MLT+
23].

In recent years, TDA has seen a rapid growth, driven by its no-

table successes in data science and machine learning, as well as by the

availability of modern open-source tools that simplify its implementa-

tion. It has been successfully applied to numerous data analysis problems

across various application domains [HLH+
16], including turbulent com-

bustion [BWT+
11, GBG+

14], fluid dynamics [KRHH11, NVBB+
22], ma-

terial sciences [GKL+
16, SPD+

19], nuclear energy [MWR+
16], bioimaging

[BDSS18, AAPW18], quantum chemistry [BGL+
18, OGT19, OT23], and as-

trophysics [Sou11, SPN+
16]. TDA’s adaptability and effectiveness in cap-

turing structural insights make it an invaluable approach in these diverse

fields.

1.1.2 Thesis Environment - The TORI Project

This thesis was carried out as part of a collaboration between the CNRS

and the University of Arizona, in connection with the European TORI

project, introduced below. The thesis was supervised by Julien Tierny

(CNRS research director, expert in topological methods for data analy-

sis and visualization, https://julien-tierny.github.io/), with occasional

collaborations with Josh Levine (professor at the University of Arizona,

specializing in neural networks for visualization and expert in topological

methods for data analysis and visualization).

The TORI project (Topological Reduction of Information) is a research

initiative funded by the European Research Council (ERC), hosted by

the French National Center for Scientific Research (CNRS) at Sorbonne

https://julien-tierny.github.io/

4 Chapter 1. Introduction

University, and launched in October 2020.

Scheduled to run for six years, until September 30, 2026, TORI brings

together researchers, students, and engineers focused on advancing com-

putational methods within the field of Topological Data Analysis (TDA).

The project’s primary objective is to design novel algorithms for interac-

tive analysis of large-scale datasets, emphasizing concise and meaningful

structural representations. Additionally, TORI aims to develop innovative

techniques for comparing these topological data abstractions and effi-

ciently computing them at scale.

The algorithms and tools developed by the TORI project are imple-

mented and distributed through the open-source software library, Topol-

ogy ToolKit (TTK), described in the next section.

1.1.3 The Topology ToolKit (TTK)

The Topology ToolKit (TTK) is an open-source library designed for data

analysis and visualization with topological methods. It is efficient, versa-

tile, and user-friendly. It is particularly well-suited for processing scalar

data defined on regular grids or triangulations in spaces of low dimension,

and provides a rich collection of robust, efficient, and generic algorithms

for topological data analysis. Developed in C++, TTK offers VTK/C++

and Python bindings as well as standalone command-line tools, making it

highly flexible and easy to integrate into diverse workflows. Its modular

design allows users to extend its functionality by creating custom analysis

modules, making it straightforward to adapt TTK to specific research or

industrial needs. Notably, the algorithm discussed in Chapter 3 is imple-

mented directly within the TTK library, and the examples presented in

that chapter are also available among the official TTK example datasets

on its website. Furthermore, with dedicated plugins for ParaView, TTK

facilitates intuitive exploration and processing of data in various formats,

bringing advanced topological analysis within easy reach. Distributed

under the BSD license, it can be freely used in both open-source and com-

mercial projects, and is supported by comprehensive documentation, de-

tailed tutorials, and numerous examples that encourage its adoption and

customization across both academic and industrial domains.

1.2. Problem Formulation 5

1.2 Problem Formulation

In the previously described application context, persistence diagrams

alone are often insufficient for performing advanced interpretation, anal-

ysis, or visualization tasks. Indeed, fully leveraging the information

encoded in persistence diagrams frequently requires reverting back to

the original scalar data or at least to a faithful approximation of it. This

requirement is particularly critical in scenarios involving time-varying

datasets, where scalar fields are stored only at selected keyframes, while

persistence diagrams are computed and stored at a significantly higher

temporal resolution.

Consequently, reliably reconstructing scalar fields from persistence

diagrams becomes an essential issue. This general problem can be further

divided into two specific subproblems:

• Problem 1: Existing approaches for optimizing the topology of

scalar fields relying on persistence diagrams are computationally

expensive; how can these optimization methods be significantly ac-

celerated to make topological simplification optimization practical

for real-world applications? In particular, how can we efficiently

remove noisy persistence pairs while precisely preserving the im-

portant pairs, including saddle pairs in three-dimensional scalar

datasets?

• Problem 2: How can we interpolate or reconstruct a plausible scalar

field from one or several persistence diagrams; specifically, how can

we ensure that the reconstructed scalar field accurately respects the

topological constraints encoded in the persistence diagram?

This manuscript proposes novel methodological solutions specifically

addressing these two challenges, with the goal of expanding the practi-

cal applicability of topological analysis tools for managing and analyzing

large-scale scientific datasets.

6 Chapter 1. Introduction

1.3 Contributions

This thesis addresses the two main challenges identified in Sec. 1.2 by

proposing new methods that advance both the simplification and the

interpolation of scalar data under topological constraints.

To tackle Problem 1, which concerns the prohibitive computational

cost of existing optimization-based approaches for topological simplifica-

tion of scalar fields guided by persistence diagrams, we propose a practical

solver specifically designed for this task. Our approach introduces two

dedicated accelerations: a fast update strategy for the persistence diagram

during the optimization process, which avoids the need to recompute it

entirely at every iteration, and a rapid update of the pair assignments

between the target diagram and the current diagram of the evolving

scalar field. These improvements yield substantial speed-ups compared

to existing persistence optimization frameworks, making the optimization

of topological simplification practical even for large three-dimensional

datasets. This enables direct applications such as the visualization of

simplified isosurfaces with fewer connected components and handles, the

extraction of prominent filament structures, and explicit surface genus

repair. To support reproducibility and further research, we provide a C++

implementation of our algorithm.

To address Problem 2, namely how to interpolate scalar fields from

one or several persistence diagrams while ensuring that the resulting

fields respect the intended topological constraints, we develop a novel

framework that integrates topological information directly into a neural

generative model. Our method combines a time-parameterized neural

network for scalar field interpolation with specialized loss functions based

on persistence diagrams, explicitly enforcing topological and geometric

consistency in the interpolated outputs. Implemented using TTK and

PyTorch, this approach offers a practical and reproducible solution for

time-varying scalar field interpolation tasks, significantly improving over

baseline techniques by embedding topological awareness directly into the

learning process.

Taken together, these contributions provide complementary solutions

to the challenges of simplifying and interpolating scalar data within topo-

logical pipelines. They help bridge the gap between abstract persistence

1.3. Contributions 7

diagrams and the rich, detailed scalar fields they summarize, thereby ex-

tending the practical reach of topological data analysis tools for large-scale

scientific data exploration.

8 Chapter 1. Introduction

1.4 Outline

The remainder of this manuscript is structured as follows:

• Chapter 2 provides the required theoretical foundations of Topolog-

ical Data Analysis along with a general overview.

• Chapter 3 presents our practical solver for scalar data topological

simplification.

• Chapter 4 describes a topology aware neural interpolation of scalar

fields.

• Chapter 5 summarizes the contributions of this thesis, discusses cur-

rent limitations, and explores potential future directions.

2Theoretical Background

Contents

2.1 Input data . 13

2.2 Persistence Diagrams . 13

2.3 Wasserstein distance between persistence diagrams . . 15

2.4 Persistence optimization . 17

2.5 Neural Networks . 18

2.5.1 Convolutional Neural Networks (CNNs) 18

2.5.2 Normalization Techniques 19

2.5.3 Residual Blocks (ResBlocks) 20

2.5.4 Upsampling Operations . 20

2.5.5 Activation Functions . 20

2.5.6 Integration within the Proposed Architecture 21

This section provides the theoretical foundations necessary to under-

stand the methods and concepts used throughout this work. We be-

gin by introducing the nature of the input data and the types of scalar

fields considered (Sec. 2.1). We then present persistence diagrams, a cen-

tral tool in topological data analysis that captures the birth and death of

topological features across scales (Sec. 2.2). In Section Sec. 2.3, we detail

the Wasserstein distance, a commonly used metric to compare persistence

diagrams. This is followed by a presentation of persistence optimization

(Section Sec. 2.4), which aims to refine or simplify topological features

while preserving relevant structures. Finally, Section Sec. 2.5 provides a

general introduction to neural networks, setting the stage for their later

use in data-driven tasks within this thesis.

11

2.1. Input data 13

2.1 Input data

The input data is provided as a piecewise-linear (PL) scalar field f : K →
R defined on a d-dimensional simplicial complex K (with d ≤ 3 in our

applications). If the data is provided on a regular grid, we consider for K
the implicit Freudenthal triangulation of the grid [H. 42, H.W60].

In practice, the data values are defined on the nv vertices of K, in the

form of a data vector, noted v f ∈ Rnv . f is assumed to be injective on the

vertices (i.e., the entries of v f are all distinct), which can be easily obtained

in practice via a variant of simulation of simplicity [EM90]. To facilitate

parameter tuning and comparisons, scalar values are normalized between

0 and 1 in all experimental setups.

2.2 Persistence Diagrams

Persistent homology has been developed independently by several re-

search groups [Bar94, FL99, Rob99, ELZ02]. Intuitively, persistent homol-

ogy considers a sweep of the data (i.e., a filtration) and estimates at each

step the corresponding topological features (i.e., homology generators), as

well as maps to the features of the previous step. This enables the iden-

tification of the topological features, along with their lifespan, during the

sweep.

In this work we consider the lexicographic filtration (as described in

[GVT23]), which we briefly recall here for completeness. Given the in-

put data vector v f ∈ Rnv , one can sort the vertices of K by increasing data

values, yielding a global vertex order. Based on this order, each d′-simplex

σ ∈ K (with d′ ∈ [0, d]) can be represented by the sorted list (in decreas-

ing values) of the (d′ + 1) indices in the global vertex order of its (d′ + 1)

vertices. Given this simplex representation, one can now compare two

simplices σi and σj via simple lexicographic comparison, which induces a

global lexicographic order on the simplices of K. This order induces a nested

sequence of simplicial complexes ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Knσ = K (where

nσ is the number of simplices of K), which we call the lexicographic filtration

of K by f .

At each step i of the filtration, one can characterize the pth homology

group of Ki, noted Hp(Ki), for instance by counting its number of homol-

ogy classes [EH09, GVT23] (i.e., the order of the group) or its number of

homology generators (i.e., the rank of the group, a.k.a. the pth Betti number,

noted βp). Intuitively, in 3D, the first three Betti numbers (β0, β1, and β2)

14 Chapter 2. Theoretical Background

respectively provide the number of connected components, of indepen-

dent cycles and voids of the complex Ki. For two consecutive steps of

the filtration i and j, the corresponding simplicial complexes are nested

(Ki ⊂ Kj). This inclusion induces homomorphims between the homol-

ogy groups Hp(Ki) and Hp(Kj), mapping homology classes at step i to

homology classes at step j. Intuitively, for the 0th homology group, one

can precisely map a connected component at step i to a connected com-

ponent at step j because the former is included in the latter. In general,

a p-dimensional homology class γi at step i can be mapped to a class γj

at step j if the p-cycles of γi and γj are homologous in Kj [EH09, GVT23].

Then, one can precisely track the homology generators between consecu-

tive steps of the filtration. In particular, a persistent generator is born at step

j (with j = i + 1) if it is not the image of any generator by the homomor-

phims mapping Hp(Ki) to Hp(Kj). Symmetrically, a persistent generator

dies at step j if it merges with another, older homology class, which was

born before it (this is sometimes called the Elder rule [EH09]). Each p-

dimensional persistent generator is associated to a persistence pair (σb, σd),

where σb is the p-simplex introduced at the birth of the generator (at step

b) and where σd is the (p + 1)-simplex introduced at its death (at step d).

A p-simplex which is involved in the birth or the death of a generator

is called a critical simplex and, in 3D, we call it a minimum, a 1-saddle,

a 2-saddle, or a maximum if p equals 0, 1, 2, or 3 [RWS11, GVT23], re-

spectively. The persistence of the pair (σb, σd), noted p(σb, σd), is given by

p(σb, σd) = v f (vd)− v f (vb), where vb and vd (the birth and death vertices of

the pair) are the vertices with highest global vertex order of σb and σd.

Figure 2.1 – Filtration of the opposite elevation function (going downward, purple: low

values, cyan: high values) on a toy terrain example (in transparent). From left to right,

simplices are progressively added in the filtered simplicial complex for increasing values

of opposite elevation. Each local minimum triggers the birth of a connected component in

the complex (sub-figures a to d). Connected components are represented by growing bars

of matching color in the diagram (bottom). When a component merges with an older one

(sub-figures e, f and g), its corresponding bar terminates its growth in the diagram and

the corresponding topological feature is said to die at the corresponding value.

2.3. Wasserstein distance between persistence diagrams 15

Note that the generators characterizing the homology groups of the

input complex K are said to have infinite persistence. This process is il-

lustrated in Fig. 2.1 for the specific case of the 0-dimensional persistent

homology (representing persistent connected components).

We call zero-persistence pairs the pairs with vb = vd. Some p-simplices

of K may be involved in no persistence pair. These mark the birth of

persistent generators with infinite persistence (i.e., which never die during

the filtration) and they characterize the homology groups of the final step

of the filtration (Knσ = K).

Figure 2.2 – Persistent diagrams for the lexicographic filtration from bottom to top of

a clean (left) and a noisy (right) terrain example. Minimum-saddle persistence pairs are

show with cyan bars in the birth-death space, while saddle-maximum pairs are shown with

purple bars. Generators with infinite persistence are marked with an upward arrow. The

persistence of each topological feature is given by the height of its bar. Critical simplices

are shown in the data with spheres, with a radius proportional to their persistence.

The set of persistence pairs induced by the lexicographic filtration of K
by f can be organized in a concise representation called the persistence dia-

gram (Fig. 2.2), noted D(f), which embeds each non zero-persistence pair

(σb, σd) as a point in a 2D space (called the birth-death space), at coordi-

nates
(
v f (vb), v f (vd)

)
. By convention, generators with infinite persistence

are reported at coordinates
(
v f (vb), v f (vmax)

)
, where vmax is the last vertex

in the global vertex order.

2.3 Wasserstein distance between persistence diagrams

Two diagrams D(f) and D(g) can be reliably compared in practice with

the notion of Wasserstein distance. For this, the two diagrams D(f) and

D(g) need to undergo an augmentation pre-processing phase. This step

ensures that the two diagrams admit the same number of points, which

will facilitate their comparison. Given a point p = (pb, pd) ∈ D(f), we

note ∆(p) its diagonal projection: ∆(p) =
(1

2 (pb + pd), 1
2 (pb + pd)

)
. Let

∆ f and ∆g be the sets of the diagonal projections of the points of D(f)

16 Chapter 2. Theoretical Background

and D(g) respectively. Then, D(f) and D(g) are augmented by append-

ing to them the set of diagonal points ∆g and ∆ f respectively. After this

augmentation, we have |D(f)| = |D(g)|.
Then, given two augmented persistence diagrams D(f) and D(g), the

Lq Wasserstein distance between them is defined as:

Wq
(
D(f),D(g)

)
= min

ϕ∈Φ

(
∑

p∈D(f)
c
(

p, ϕ(p)
)q
) 1

q
, (2.1)

where Φ is the set of all bijective maps between the augmented di-

agrams D(f) and D(g), which specifically map points of finite (respec-

tively infinite) r-dimensional persistent generators to points of finite (re-

spectively infinite) r-dimensional persistent generators. For this distance,

the cost c(p, p′) is set to zero when both p and p′ lie on the diagonal (i.e.,

matching dummy features has no impact on the distance). Otherwise, it

is set to the Euclidean distance in birth-death space ||p− p′||2.

Figure 2.3 – The Wasserstein distance W2 between D(f) (top) and D(g) (bottom) is

computed by assignment optimization (Eq. 2.1) in the 2D birth-death space (right). The

optimal assignment ϕ∗ (arrows) encodes a minimum cost transformation of D(f) into

D(g), which displaces persistence pairs in the birth-death space or cancel them by send-

ing them to the diagonal.

The Wasserstein distance induces an optimal assignment ϕ∗ from D(f)

to D(g) (Fig. 2.3), which depicts how to minimally transform D(f) into

D(g) (given the considered cost). This transformation may induce point

displacements in the birth-death space, as well as projections to the diag-

onal (encoding the cancellation of a persistence pair).

2.4. Persistence optimization 17

2.4 Persistence optimization

Several frameworks have been introduced for persistence optimization

(Sec. 3.1.1). We review a recent, efficient, and generic framework

[CCG+
21].

Given a scalar data vector v f ∈ Rnv (Sec. 2.1), the purpose of persis-

tence optimization is to modify v f such that its persistence diagram D(f)

minimizes a certain loss L, specific to the considered problem. Then the

solution space of the optimization problem is Rnv .

Let F : Rnv → Rnσ be the filtration map, which maps a data vector v f

from the solution space Rnv to a filtration represented as a vector F (v f) ∈
Rnσ , where the ith entry contains the index of the ith simplex σi of K in

the global lexicographic order (Sec. 2.2). For convenience, we maintain a

backward filtration map F+ : Rnσ → Rnσ , which maps a filtration vector

F (v f) to a vector in Rnσ , whose ith entry contains the index of the highest

vertex (in global vertex order) of the ith simplex in the global lexicographic

order.

Given a persistence diagram D(f), the critical simplex persistence order

can be introduced as follows. First, the points of D(f) are sorted by in-

creasing birth and then, in case of birth ties, by increasing death. Let us

call this order the diagram order. Then the set of persistence pairs can also

be sorted according to the diagram order, by interleaving the birth and

death simplices corresponding to each point. This results in an ordering

of the critical simplices, called the critical simplex persistence order, where

the (2i)th and (2i + 1)th entries correspond respectively to the birth and

death simplices of the ith point pi in the diagram order. Critical simplices

which are not involved in a persistence pair (i.e., corresponding to ho-

mology classes of infinite persistence) are appended to this ordering, in

increasing order of birth values.

Let us now consider the persistence map P : Rnσ → Rnσ , which maps

a filtration vector F (v f) to a persistence image P
(
F (v f)

)
, whose ith en-

try contains the critical simplex persistence order (defined above) for the ith

simplex in the global lexicographic order. For convenience, the entries

corresponding to filtration indices which do not involve critical simplices

are set to −1.

Now, to evaluate the relevance of a given diagram D(f) for the con-

sidered optimization problem, one needs to define a loss term. Let

E : Rnσ → R be an energy function, which evaluates the diagram en-

ergy given its critical simplex persistence order. Then, given an input data

18 Chapter 2. Theoretical Background

vector v f , the associated loss L : Rnv → R is given by:

L(v f) = E ◦ P ◦ F (v f).

Since distinct functions can admit the same persistence diagram, the

global minimizer of the above loss may not be unique. However, given

the search space (Rnv), the search for a global minimizer is not tractable

anyway in practice and local minimizers will be searched instead.

If E is locally Lipschitz and a definable function of persistence, then the

composition E ◦ P ◦ F is also definable and locally Lipschitz [CCG+
21].

This implies that L is differentiable almost everywhere and admits a well

defined sub-differential. Then, a stochastic sub-gradient descent algorithm

[KB15] converges almost surely to a critical point of L [DDKL20]. In prac-

tice, this means that the loss can be decreased by displacing each dia-

gram point pi in the diagram D(f) according to the sub-gradient. As-

suming a constant global lexicographic order, this displacement can be

back-propagated into modifications in data values in the vector v f , by

identifying the vertices vib and vid corresponding to the birth and death

(Sec. 2.2) of the ith point in the diagram order:

vib = F+
(
P−1(2i)

)
vid = F+

(
P−1(2i + 1)

)
,

(2.2)

and by updating their data values v f (vib) and v f (vid) accordingly.

2.5 Neural Networks

This section presents the essential Machine Learning principles and tech-

niques relevant to the neural architectures used in this thesis. We specifi-

cally focus on deep learning methods suitable for analyzing and generat-

ing complex volumetric data, introducing convolutional neural networks,

normalization methods, residual learning, upsampling techniques, and

activation functions.

2.5.1 Convolutional Neural Networks (CNNs)

CNNs constitute a class of deep neural networks specifically designed

to handle structured spatial or volumetric data such as images or three-

dimensional scalar fields [LBH15]. The key component of CNNs is the

convolutional layer, which applies filters (kernels) across an input volume

to capture local spatial correlations.

2.5. Neural Networks 19

In particular, 3D convolutional layers (Conv3D) employ volumetric

kernels sliding across the spatial dimensions, producing a structured set

of feature maps representing different spatial features. Formally, a convo-

lution operation is expressed as follows:

(V ∗ K)(i, j, k) =
a

∑
p=−a

b

∑
q=−b

c

∑
r=−c

V(i− p, j− q, k− r) · K(p, q, r), (2.3)

where V denotes the input volume indexed by spatial coordinates

(i, j, k), and K is the convolutional kernel. By stacking multiple convo-

lutional layers, CNNs progressively build hierarchical representations ca-

pable of capturing increasingly complex patterns in data.

2.5.2 Normalization Techniques

Normalization is widely employed to improve training stability and speed

up convergence of neural networks by controlling the internal distribution

of activations. Different normalization methods exist, including Batch

Normalization [IS15], Layer Normalization [BKH16], and Instance Nor-

malization [UVL16].

Instance Normalization (InstanceNorm3D), extensively used in gen-

erative tasks, normalizes each individual instance separately. It operates

independently across spatial dimensions for each feature map and each

sample, defined as follows:

y =
x− µ(x)√
σ2(x) + ϵ

, (2.4)

where x denotes the input activation tensor, µ(x) and σ2(x) are the

mean and variance computed per-instance and per-channel, and ϵ is a

small constant for numerical stability. Here, a channel refers to a feature

map dimension, typically representing different learned filters in the out-

put of a convolutional layer. For example, in a 3D convolution, a tensor

may have dimensions (batch, channels, depth, height, width).

Instance normalization normalizes each sample independently, which

reduces the impact of variations in contrast, illumination, or texture. This

effect is often described as improving style invariance, meaning the network

becomes less sensitive to superficial style changes and focuses more on

structural content, which helps the model generalize better across different

data distributions.

20 Chapter 2. Theoretical Background

2.5.3 Residual Blocks (ResBlocks)

Residual networks were introduced to overcome the challenges of train-

ing very deep neural networks, notably the vanishing gradient problem

[HZRS16]. The central concept is the skip connection or residual connec-

tion, enabling information to bypass certain layers and directly flow into

deeper parts of the network. Formally, a residual block computes:

y = R(x, W) + x, (2.5)

where x and y are the input and output tensors of the residual block,

respectively, and R(x, W) denotes the learned residual mapping, typically

consisting of convolutional, activation, and normalization layers.

Such residual connections simplify optimization, allow training of

deeper networks, and generally lead to improved performance in a wide

variety of tasks.

2.5.4 Upsampling Operations

Upsampling operations increase the spatial or volumetric resolution of

feature maps and are essential for tasks such as data generation, seg-

mentation, or reconstruction. Several methods are commonly used for

upsampling, including interpolation (nearest-neighbor, bilinear, trilinear)

and transposed convolution (also called fractionally-strided convolution).

In this thesis, we use interpolation-based upsampling followed by con-

volutional refinement to progressively reconstruct high-resolution volu-

metric data. The choice of interpolation method affects the smoothness

and quality of reconstructed features and is crucial for preserving spatial

details in generated or interpolated scalar fields.

2.5.5 Activation Functions

Activation functions introduce nonlinear transformations within neural

networks, which are crucial for modeling complex patterns:

ReLU (Rectified Linear Unit)

ReLU(x) = max(0, x) (2.6)

ReLU is preferred due to its computational simplicity, ease of opti-

mization, and reduced likelihood of vanishing gradients.

2.5. Neural Networks 21

Sigmoid

σ(x) =
1

1 + e−x (2.7)

Sigmoid functions map outputs between 0 and 1, making it suitable

for tasks involving probabilistic interpretations or normalized predictions,

such as final-layer activations in volumetric data reconstruction.

2.5.6 Integration within the Proposed Architecture

The methods presented above are integrated into the neural architecture

exploited in Chapter 4. Specifically, convolutional blocks, normalization

layers, residual connections, upsampling operations, and activation func-

tions are strategically combined to construct a powerful generative model

capable of accurately reconstructing missing temporal snapshots in time-

varying scalar fields. The detailed description and evaluation of this ar-

chitecture are provided in chapter 4.

3A practical solver for

scalar data topological

simplification

Contents

Our Contributions in one Image 25

3.1 Context . 26

3.1.1 Related work . 27

3.1.2 Contributions . 29

3.2 Approach . 30

3.3 Algorithm . 33

3.3.1 Direct gradient descent . 33

3.3.2 Fast persistence update . 34

3.3.3 Fast assignment update . 36

3.4 Results . 37

3.4.1 Quantitative performance 38

3.4.2 Analyzing topologically simplified data 43

3.4.3 Repairing genus defects in surface processing 47

3.4.4 Limitations . 49

3.5 Summary . 50

This chapter presents a practical approach for the optimization of topo-

logical simplification, a central pre-processing step for the analysis

and visualization of scalar data. Given an input scalar field f and a set

of “signal” persistence pairs to maintain, our approaches produces an out-

put field g that is close to f and which optimizes (i) the cancellation of

23

24 Chapter 3. A practical solver for scalar data topological simplification

“non-signal” pairs, while (ii) preserving the “signal” pairs. In contrast to

pre-existing simplification algorithms, our approach is not restricted to

persistence pairs involving extrema and can thus address a larger class of

topological features, in particular saddle pairs in three-dimensional scalar

data. Our approach leverages recent generic persistence optimization

frameworks and extends them with tailored accelerations specific to the

problem of topological simplification. Extensive experiments report sub-

stantial accelerations over these frameworks, thereby making topological

simplification optimization practical for real-life datasets. Our approach

enables a direct visualization and analysis of the topologically simplified

data, e.g., via isosurfaces of simplified topology (fewer components and

handles). We apply our approach to the extraction of prominent filament

structures in three-dimensional data. Specifically, we show that our pre-

simplification of the data leads to practical improvements over standard

topological techniques for removing filament loops. We also show how

our approach can be used to repair genus defects in surface processing.

Finally, we provide a C++ implementation for reproducibility purposes.

The work presented in this chapter has been published in the

IEEE Transactions on Visualization and Computer Graphics as part

of the proceedings of the IEEE VIS 2024 conference [KPLT24].

It has been certified as replicable by the Graphics Replicability

Stamp Initiative (http://www.replicabilitystamp.org/). Our im-

plementation is available at: https://github.com/MohamedKISSI/

Code-Paper-A-Pratical-Solver-for-Scalar-Data-Topological-Simplification.

git, and it is also integrated into the Topology ToolKit (TTK) [TFL+
17].

The examples presented in this section are also available on the TTK

website.

http://www.replicabilitystamp.org#https-github-com-mohamedkissi-code-paper-a-pratical-solver-for-scalar-data-topological-simplification
https://github.com/MohamedKISSI/Code-Paper-A-Pratical-Solver-for-Scalar-Data-Topological-Simplification.git
https://github.com/MohamedKISSI/Code-Paper-A-Pratical-Solver-for-Scalar-Data-Topological-Simplification.git
https://github.com/MohamedKISSI/Code-Paper-A-Pratical-Solver-for-Scalar-Data-Topological-Simplification.git

25

Our Contributions in one Image

Figure 3.1 – Given an acquired scalar field f of a network of arteries (a), the core structure of the blood vessels can be extracted

(grey filaments, (b)) with upward discrete integral lines, started at 2-saddles above 0.1 (isovalue representing the geometry of

the vessels, transparent isosurface). However, as shown in the persistence diagram D(f), f contains many saddle-pairs (light

purple bars), corresponding to persistent 1- dimensional generators [GVT23, Iur21] (curves, colored by persistence, bottom

zoom, (b)), yielding incorrect loops in the filament structures (top zoom). In this example, standard techniques for gradient

field simplification (i.e., saddle connector reversal) cannot simplify these spurious loops while maintaining a valid gradient

(b), as shown in the bottom histogram (number of skipped reversals as a function of persistence). Our approach efficiently

generates a function g which is close to f and which optimizes saddle pair cancellation while maintaining the other features

(D(g)). This enables the direct visualization and analysis of the simplified data (c), where isosurface handles have been cut

(bottom zoom) and most spurious filament loops have been simplified (top zoom).

26 Chapter 3. A practical solver for scalar data topological simplification

3.1 Context

As acquisition devices and computational resources are getting more so-

phisticated and efficient, modern datasets are growing in size. Conse-

quently, the features of interest contained in these datasets gain in geomet-

rical complexity, which challenge their interpretation and analysis. This

motivates the design of tools capable of robustly extracting the structural

patterns hidden in complex datasets. This task is the purpose of Topologi-

cal Data Analysis (TDA) [EH09, Zom10], which provides a family of tech-

niques for the generic, robust and multi-scale extraction of structural fea-

tures. It has been successfully applied in a number of data analysis prob-

lems [HLH+
16], in various applications, including turbulent combustion

[BWT+
11, GBG+

14], material sciences [GKL+
16, SPD+

19], nuclear energy

[MWR+
16], fluid dynamics [KRHH11, NVBB+

22], bioimaging [BDSS18,

AAPW18], quantum chemistry [BGL+
18, OGT19, OT23], or astrophysics

[Sou11, SPN+
16]. TDA provides a variety of topological data abstrac-

tions, which enable the extraction of specific types of features of interest.

These abstractions include critical points [Ban67], persistence diagrams

[ELZ02, BKR14, GVT23], merge [CWSA16, GFJT17, LWW+
24] and con-

tour trees [CSA00, GFJT19a], Reeb graphs [BGSF08, PSBM07, GFJT19b],

or Morse-Smale complexes [GBHP08, RWS11, SN12, GBP19, MLT+
23].

A central aspect of TDA is its ability to analyze data at multiple scales.

Thanks to various importance measure [ELZ02, CSvdP04], these abstrac-

tions can be iteratively simplified, to reveal the prominent structures in a

dataset.

In practice, this topological simplification can be achieved in two fash-

ions: either by (i) a post-process simplification of the abstractions, or by

(ii) a pre-process simplification of the data itself. While the post-process

approach (i) requires specific simplification mechanisms tailored to the ab-

straction at hand [CSvdP04, PSBM07, Gyu08], the pre-process strategy of-

fers a generic framework which is independent of the considered abstrac-

tion. This generic aspect eases software design, as simplification needs to

be implemented only once [TFL+
17, BMBF+

19]. Pre-process simplification

has also the advantage of being reusable by multiple abstractions when

these are combined within a single data analysis pipeline (see [TTK22] for

real-life examples). Also, pre-process simplification enables the direct vi-

sualization of the simplified data itself (e.g. with isosurfaces). Finally, it

is also compatible with further post-process simplification if needed. For

these reasons, we focus on pre-process simplification in this work.

3.1. Context 27

Several combinatorial approaches [Soi04, EMP06, AAY06, AGLM09,

BLW12, TP12, LGMT20] have been proposed for the pre-simplification of

persistence pairs involving extrema. However, no efficient combinatorial

algorithm has been proposed for the pre-simplification of saddle pairs,

hence preventing a more advanced simplification of 3D datasets. In fact,

scalar data simplification in 3D is NP-hard in general [ABD+
13]. Then,

there may not even exist polynomial time algorithms for directly solving

this problem. This theoretical limitation requires a shift in strategy. A

recent alternative consists in considering persistence optimization frame-

works [CCG+
21, SWB21, NM22], which optimize the data in a best ef-

fort manner, given criteria expressed with persistence diagrams. However,

while one could leverage these frameworks for data pre-simplification (i.e.,

to cancel noisy features while preserving the features of interest, as much

as possible), current frameworks can require up to days of computation

for regular grids of standard size (Sec. 3.2), making them impractical for

real-life datasets.

This chapter addresses this issue and introduces a practical solver for

the optimization of the topological simplification of scalar data. Our ap-

proach relies on a number of pragmatic observations from which we de-

rived specific accelerations, for each sub-step of the optimization (Secs.

3.3.2 and 3.3.3). Our accelerations are simple and easy to implement, but

result in significant gains in terms of runtimes. Extensive experiments

(Sec. 3.4.1) report ×60 accelerations on average over state-of-the-art frame-

works (with both fewer and faster iterations), thereby making topological

simplification optimization practical for real-life datasets. We illustrate

the utility of our contributions in two applications. First, our work en-

ables the direct visualization and analysis of topologically simplified data

(Sec. 3.4.2). This reduces visual clutter in isosurfaces by simplifying their

topology (fewer components and handles). We also investigate filament

extraction in three-dimensional data, where we show that our approach

helps standard topological techniques for removing filament loops. Sec-

ond, we show how to use our approach to repair genus defects in surface

processing (Sec. 3.4.3).

3.1.1 Related work

Beyond post-process simplification schemes tailored for specific topo-

logical abstractions (e.g. for merge/contour trees [Car04], Reeb graphs

[PSBM07] or Morse-Smale complexes [Gyu08, GBHP09, GRSW13]), the

28 Chapter 3. A practical solver for scalar data topological simplification

literature related to pre-process simplification can be classified into two

categories.

Combinatorial methods: the first combinatorial approach for the topolog-

ical simplification of scalar data on surfaces has been proposed by Edels-

brunner et al. [EMP06]. This work can be seen as a generalization of

previous approaches in terrain modeling where only persistence pairs in-

volving minima were removed [Soi04, AAY06]. Attali et al. [AGLM09]

extended this framework to generic filtrations, while Bauer et al. [BLW12]

extended it to discrete Morse theory [For98]. Tierny et al. presented a gen-

eralized approach [TP12], supporting a variety of simplification criteria,

which was later extended by Lukasczyk et al. [LGMT20] with an efficient

shared-memory parallel algorithm. Such combinatorial simplification al-

gorithms can be used directly within optimization procedures [NKSM24],

to remove noise in the solution at each iteration. While most of the above

approaches were specifically designed for scalar data on surfaces, they

can be directly applied to domains of higher dimensions. However, they

can only simplify persistence pairs involving extrema. For instance, this

means that they cannot remove saddle pairs in three-dimensional scalar

fields, thus preventing an advanced simplification of this type of datasets.

In general, scalar data simplification in 3D has been shown to be NP-hard

[ABD+
13]. Then, a polynomial time algorithm solving this problem may

not even exist. This theoretical limitation requires a shift in strategy.

Numerical methods: in contrast to combinatorial methods, which come

with strong guarantees on the result, numerical approaches aim at pro-

viding an approximate solution in a best effort manner. In other words,

these methods may not fully simplify three-dimensional scalar fields up

to the desired tolerance either, but they will do their best to provide a

result as close as possible to the specified simplification. As such, this

type of approaches appear as a practical alternative overcoming the the-

oretical limitation of combinatorial approaches discussed above. In ge-

ometric modeling, several techniques have been described to generate

smooth scalar fields on surfaces, with a minimal number of critical points

[NGH04, GZ07, PF09]. Bremer et al. [BEHP04] proposed a method based

on Laplacian smoothing to reconstruct a two-dimensional scalar field cor-

responding to a pre-simplified Morse-Smale complex. This work has been

extended by Weinkauf et al. [WGS10] to bi-Laplacian optimization, with

an additional enforcement of gradient continuity across the separatrices

of the Morse-Smale complex. While an extension of this work has been

documented for the 3D case [GJR+
14], it only addresses the simplifica-

3.1. Context 29

tion of persistence pairs involving extrema, without explicit control on

the saddle pairs. Recently, a new class of methods dedicated to persis-

tence optimization has been documented. Specifically, these approaches

introduce a framework for optimizing a dataset, according to criteria ex-

pressed with persistence diagrams, with applications in various tasks in-

cluding surface matching [PSO18], point cloud processing [GGSG20], clas-

sification [CCG+
21] and more. Solomon et al. [SWB21] presented an ap-

proach based on stochastic subsampling applied to 2D images. Carriere et

al. [CCG+
21] presented an efficient and generic persistence optimization

framework, supporting a wide range of criteria and applications, exploit-

ing the convergence properties of stochastic sub-gradient descent [KB15]

for tame functions [DDKL20]. Nigmetov et al. [NM22] presented an alter-

native method, drastically reducing the number of optimization iterations,

but at the cost of significantly more computationally expensive steps. As

described in Sec. 3.2, one can leverage these frameworks for the prob-

lem of topological simplification, however, with impractical runtimes for

three-dimensional datasets of standard size (e.g. up to days of computa-

tion). We address this issue in this work by proposing a practical approach

for topological simplification optimization, with substantial accelerations

over state-of-the-art frameworks for persistence optimization [CCG+
21].

3.1.2 Contributions

This chapter makes the following new contributions:

1. Algorithm: We introduce a practical solver for the optimization of

topological simplification for scalar data (Sec. 3.3). Our algorithm is

based on two accelerations, which are tailored to the specific prob-

lem of topological simplification:

• We present a simple and practical procedure for the fast update

of the persistence diagram of the data along the optimization

(Sec. 3.3.2), hence preventing a full re-computation at each step.

• We describe a simple and practical procedure for the fast up-

date of the pair assignments between the diagram specified

as target, and the persistence diagram of the optimized data

(Sec. 3.3.3), also preventing a full re-computation at each step.

Overall, the combination of these accelerations makes topological

simplification optimization tractable for real-life datasets.

30 Chapter 3. A practical solver for scalar data topological simplification

2. Applications: Thanks to its practical time performance, our work

sets up ready-to-use foundations for several concrete applications:

• Visualization of topologically simplified data (Sec. 3.4.2): we illus-

trate the utility of our framework for the direct visualization

and analysis of topologically simplified data. Our approach

reduces visual clutter in isosurfaces by simplifying connected

components as well as, in contrast to previous work, surface

handles. We also investigate prominent filament extraction in

3D data, where we show that our approach helps standard

topological techniques for removing filament loops.

• Surface genus repair (Sec. 3.4.3): we show how to use our frame-

work to repair genus defects in surface processing, with an ex-

plicit control on the employed primitives (cutting or filling).

3. Implementation: We provide a C++ implementation of our algo-

rithm that can be used for reproducibility purposes.

3.2 Approach

This section describes our overall approach for the optimization of the

topological simplification of scalar data.

Given the diagram D(f) of the input field f , we call a signal pair a

persistence pair of D(f) which is selected by the user for preservation.

Symmetrically, we call a non-signal pair a persistence pair of D(f) which is

selected by the user for cancellation. Note that this distinction between sig-

nal and non-signal pairs is application dependent. In practice, the user can

be aided by several criteria, such as persistence [ELZ02], geometrical mea-

sures [CSvdP04], etc. Then, topological simplification can be expressed as

an optimization problem, with the following objectives:

1. Penalizing the persistence of the non-signal pairs;

2. Enforcing the precise preservation of the signal pairs.

In short, we wish to penalize the undesired features (objective 1), and,

at the same time, enforce the precise preservation of the features of the

input which are deemed relevant (objective 2). The latter objective is im-

portant in practice to preserve the accuracy of the features of interest. As

later discussed in Sec. 3.3.3 (and illustrated in Fig. 3.2), non-signal and sig-

nal pairs do interact during the optimization, thereby perturbing signal

3.2. Approach 31

Figure 3.2 – Interactions between non-signal and signal pairs during the optimization.

A multi-saddle vertex can be involved in both a non-signal pair p (cyan bar in D(f))

and a signal pair p′ (vertically aligned purple bar in D(f)). At iteration j, the update

of the non-signal pair p unfolds the multi-saddle into multiple simple saddles of distinct

values, effectively perturbing the birth of the signal pair p′ and making it non-still.

In real-life data, especially in 3D, such configurations occur often, and cascade. In our

experiments (Sec. 3.4), at each iteration, 11% of the signal pairs are perturbed this way

by non-signal pairs (on average, and up to 32%). This is addressed by our loss (Sec. 3.2)

which enforces signal pair preservation.

pairs. In our experiments (Sec. 3.4), at each optimization iteration, 11% of

the signal pairs are perturbed by non-signal pairs (on average, and up to

32%). In certain configurations, this can drastically alter the persistence of

signal pairs. Hence, to address this issue, the precise preservation of the

signal pairs should be explicitly constrained.

In the following, we formalize this specific optimization problem based

on the generic framework described in Sec. 2.4. Our novel solver (for

efficiently solving it) is presented in Sec. 3.3.

Let DT be the target diagram. It can be obtained by copying the dia-

gram D(f) of the input field f , and by removing the non-signal pairs. DT

encodes the two objectives of our problem: it describes the constraints for

the cancellation of the noisy features of f (objective 1) as well as the lock

constraints for its features of interest (objective 2).

In general, a perfect reconstruction (i.e., a scalar field g such that D(g) =

DT) may not exist in 3D (deciding on its existence is NP-hard [ABD+
13]).

Thus, a practical strategy consists in optimizing the scalar field f such that

its diagram D(f) gets as close as possible to DT. For this, we consider the

following simplification energy:

E
(
D(f)

)
=W2

(
D(f),DT

)2. (3.1)

Since the Wasserstein distance is locally Lipschitz and a definable function

of persistence [CCG+
21], the optimization framework of Sec. 2.4 can be

used to optimize L = E ◦ P ◦ F with guaranteed convergence.

Specifically, at each iteration, given the optimal assignment ϕ∗ induced

by the Wasserstein distance between D(f) and DT (Sec. 2.3), one can dis-

32 Chapter 3. A practical solver for scalar data topological simplification

Figure 3.3 – Optimizing the simplification of an input scalar field f = f0 into a field

g = f f inal for the removal of a user selected saddle-maximum pair (cyan). At each

iteration (j < j′ < j′′), given the point pi ∈ D(f j) to cancel, the data values of its birth

and death vertices vib and vid (cyan spheres in the data) are modified to project pi to the

diagonal. In this example, this results in a scalar field g which is close to f , with the

prescribed topology.

Algorithm 1 Baseline optimization approach for topological simplification.
Input: Input scalar field f = f0 : K → R.

Input: Target diagram DT .

Input: Stopping conditions s ∈ [0, 1], jmax ∈N.

Output: Topologically simplified scalar field g = f f inal : K → R.

1: j← 0

2: D(f j)← PersistenceDiagramComputation(v f j
)

3:
(
L(v f j

), ϕ∗j
)
←WassersteinDistanceComputation

(
D(f j),DT

)
4: do

5: j← j + 1

6: v f j
← GradientDescentStep

(
ϕ∗j−1, v f j−1

)
7: D(f j)← PersistenceDiagramComputation(v f j

)

8:
(
L(v f j

), ϕ∗j
)
←WassersteinDistanceComputation

(
D(f j),DT

)
9: while L

(
v f j

)
> sL

(
v f0

)
and j < jmax

place each point pi in D(f) towards its individual target ϕ∗(pi) by ad-

justing accordingly the corresponding scalar values v f (vib) and v f (vid)

(Eq. 2.2). In practice, the generic optimization framework reviewed in

Sec. 2.4 computes this displacement (given ϕ∗) via automatic differentia-

tion [CCG+
21] and by using Adam [KB15] for gradient descent.

However, depending on the employed step size, a step of gradient

descent on v f may change the initial filtration order (Sec. 2.2). Thus, after

a step of gradient descent, the persistence diagram of the optimized data

needs to be recomputed and, thus, so does its optimal assignment ϕ∗ to

the target DT. This procedure is then iterated, until the loss at the current

iteration is lower than a user-specified fraction s of the loss at the first

iteration (or until a maximum number jmax of iterations). We call this

overall procedure the baseline optimization for topological simplification. It is

summarized in Alg. 1 and illustrated in Fig. 3.3.

As shown in Alg. 1, each iteration j of the optimization involves a

3.3. Algorithm 33

step of gradient descent, the computation of the diagram D(f j) and the

computation of its Wasserstein distance to DT. While the first of these

three steps has linear time complexity, the other two steps are notori-

ously computationally expensive and both have cubic theoretical worst

case time complexity, O(n3
σ). In practice, practical implementations for

persistence diagram computation tend to exhibit a quadratic behavior

[BKRW17, BKR14, GVT23]. Moreover, the exact optimal assignment al-

gorithm [Mun57] can be approximated in practice to improve runtimes,

for instance with Auction-based [BC91, KMN17, VBT20] or sliced approx-

imations [CCO17].

However, even when using the above practical implementations for

persistence computation and assignment optimization, the baseline opti-

mization approach for topological simplification has impractical runtimes

for datasets of standard size. Specifically, for the simplifications consid-

ered in our experiments (Sec. 3.4), this approach can require up to days of

computations per dataset. When it completes within 24 hours, the com-

putation spends 20% of the time in persistence computation and 75% in

assignment optimization.

3.3 Algorithm

This section describes our algorithm for topological simplification opti-

mization. It is based on a number of practical accelerations of the baseline

optimization (Alg. 1), which are particularly relevant for the problem of

topological simplification.

3.3.1 Direct gradient descent

Instead of relying on automatic differentiation and the Adam optimizer

[KB15] as done in the generic framework reviewed in Sec. 2.4, similar to

[PSO18], we can derive the analytic expression of the gradient of our en-

ergy on a per-iteration basis (Eq. 3.1) and perform at each iteration a direct

step of gradient descent, in order to improve performance. Specifically, at

the iteration j (Alg. 1), given the current persistence diagram D(f j), if the

assignments between diagonal points are ignored (these have zero cost,

Sec. 2.3), Eq. 3.1 can be re-written as:

E
(
D(f j)

)
= min

ϕ∈Φ
∑

pi∈D(f j)

||pi − ϕ(pi)||22.

34 Chapter 3. A practical solver for scalar data topological simplification

As the optimal assignment ϕ∗j (i.e., minimizing the energy for a fixed

D(f j)) is constant at the iteration j, the energy can be re-written as:

E
(
D(f j)

)
= ∑

pi∈D(f j)

(
pib − ϕ∗j (pi)b

)2
+

(
pid − ϕ∗j (pi)d

)2.

Then, given Eq. 2.2, for the iteration j, the overall optimization loss

L(v f j) can be expressed as a function of the input data vector v f j :

L(v f j) = ∑
pi∈D(f j)

(
v f j(vib)− ϕ∗j (pi)b

)2
+

(
v f j(vid)− ϕ∗j (pi)d

)2.

For the iteration j, for a fixed assignment ϕ∗j , this energy is convex with

v f j (in addition to being locally Lipschitz) and gradient descent can be

considered. Specifically, let ∇vib ∈ Rnv be a vector with zero entries,

except for the ib
th entry, which is set to 1. Let ∇vid ∈ Rnv be the vector

constructed similarly for vid . Then, by the chain rule, we have:

∇L(v f j) = ∑
pi∈D(f j)

(
2
(
v f j(vib)− ϕ∗j (pi)b

)
∇vib

+ 2
(
v f j(vid)− ϕ∗j (pi)d

)
∇vid

)
.

We now observe that the gradient can be split into two terms, a birth

gradient (noted ∇L(v f j)b) and a death gradient (noted ∇L(v f j)d):

∇L(v f j)b = ∑pi∈D(f j) 2
(
v f j(vib)− ϕ∗j (pi)b

)
∇vib

∇L(v f j)d = ∑pi∈D(f j) 2
(
v f j(vid)− ϕ∗j (pi)d

)
∇vid .

Then, given the above gradient expressions, a step of gradient descent

is obtained by:

v f j+1 = v f j −
(
(αb∇L(v f j)b + αd∇L(v f j)d

)
,

where αb, αd ∈ R are the gradient step sizes for the birth and death gra-

dients respectively. Such individual step sizes enable an explicit control

over the evolution of the persistence pairs to cancel (see Sec. 3.4.3).

3.3.2 Fast persistence update

As described in Sec. 3.2, each optimization iteration j involves the com-

putation of the persistence diagram of the data vector v f j , which is com-

putationally expensive (20% of the computation time on average). Subse-

quently, for each persistence pair pi, the data values of its vertices vib and

vid will be updated given the optimal assignment ϕ∗j .

3.3. Algorithm 35

Figure 3.4 – Updated vertices (dark purple vertices, center insets) along the topological

simplification optimization of a noisy terrain (non-signal pairs, to simplify, are shown in

cyan). In this example, only 20% of the vertices are updated per iteration on average. The

discrete gradient (at the core of a recent, fast persistence computation algorithm [GVT23])

only needs to be recomputed for these, yielding a x2 speedup for persistence computation.

A key observation can be leveraged to improve the performance of the

persistence computation stage. Specifically, the updated data vector v f j+1

only contains updated data values for the subset of the vertices of K which

are the birth and death vertices vib and vid of a persistence pair pi. Then,

only a small fraction of the vertices are updated from one iteration to the

next, as shown in Fig. 3.4. In practice, for the simplifications considered

in our experiments (Sec. 3.4), 90% of the vertices of K do not change their

data values between consecutive iterations (on average over our datasets,

with the baseline optimization). This indicates that a procedure capable

of quickly updating the persistence diagram D(f j+1) based on D(f j) has

the potential to improve performance in practice.

Several approaches focus on updating a persistence diagram based

on a previous estimation [CEM06, LN24], with a time complexity that is

linear for each vertex order transposition between the two scalar fields.

However, this number of transpositions can be extremely large in practice.

Instead, we derive a simple procedure based on recent work for

computing persistent homology with Discrete Morse Theory (DMT)

[For98, RWS11, GVT23], which we briefly review here for completeness.

Specifically, the Discrete Morse Sandwich (DMS) approach [GVT23] revis-

its the seminal algorithm PairSimplices [ELZ02] within the DMT setting,

with specific accelerations for volume datasets. This algorithm is based

on two main steps. First, a discrete gradient field is computed, for the fast

identification of zero-persistence pairs. Second, the remaining persistence

pairs are computed by restricting the algorithm PairSimplices to the critical

simplices (with specific accelerations for the persistent homology groups

of dimension 0 and d− 1).

The first key practical insight about this algorithm is that its first step,

discrete gradient computation, is documented to represent in practice, in

36 Chapter 3. A practical solver for scalar data topological simplification

3D, 66% of the persistence computation time on average [GVT23] (in se-

quential mode). This indicates that, if one could quickly update the dis-

crete gradient between consecutive iterations, the overall persistence com-

putation step could be accelerated by up to a factor of 3 in practice.

The second key practical insight about this algorithm is that the dis-

crete gradient computation is a completely local operation, specifically to

the lower star of each vertex v [RWS11] (i.e., the co-faces of v containing

no higher vertex than v in the global vertex order).

Thus, we leverage the above two observations to expedite the computa-

tion of the diagram D(f j), based on the diagram D(f j−1). Specifically, we

mark as updated all the vertices of K for which the data value is updated by

gradient descent at iteration j− 1 (Sec. 3.3.1). Then, the discrete gradient

field at step j is copied from that at step j− 1 and the local discrete gradi-

ent computation procedure [RWS11] is only re-executed for these vertices

for which the lower star may have changed from step j− 1 to step j, i.e. the

vertices marked as updated or which contain updated vertices in their star.

This localized update guarantees the computation of the correct discrete

gradient field at step j, with a very small number of local re-computations.

Next, the second step of the DMS algorithm [GVT23] (i.e., the computation

of the persistence pairs from the critical simplices) is re-executed as-is.

3.3.3 Fast assignment update

As described in Sec. 3.2, each optimization iteration j involves the compu-

tation of the optimal assignment ϕ∗j from the current diagram D(f j) to the

target DT, which is computationally expensive.

However, for the problem of simplification, a key practical observation

can be leveraged to accelerate this assignment computation. In practice,

an important fraction of the pairs of D(f j) to optimize (among signal and

non-signal pairs) may only move slightly in the domain from one iteration

to the next (as illustrated in Fig. 3.2), and some do not move at all. For

these pairs which do not move at step j, the assignment can be re-used

from the step j − 1, hence reducing the size of the assignment problem

(Sec. 2.3), and hence reducing its practical runtime.

Given two persistence diagrams D(f j) and D(f j−1), we call a still per-

sistence pair a pair of points (pi, p′i) with pi ∈ D(f j) and p′i ∈ D(f j−1) such

that vib = vi′b
and vid = vi′d

. In other words, a still persistence pair is a pair

which does not change its birth and death vertices from one optimization

iteration to the next. In practice, for the simplifications considered in our

3.4. Results 37

experiments (Sec. 3.4), 84% of the persistence pairs of D(f j) are still (on

average over the iterations and our test datasets, Sec. 3.4). This indicates

that a substantial speedup could be obtained by expediting the assignment

computation for still pairs.

Let S be the set of still pairs between the iteration j and j− 1. Then,

for each pair (pi, p′i) ∈ S , we set ϕ∗j (pi) ← ϕ∗j−1(p′i). Concretely, we re-use

at step j the assignment at step j− 1 for all the still pairs.

Next, let D(f j) be the reduced diagram at step j, i.e., the subset of D(f j)

which does not contain still pairs: D(f j) = D(f j)− {pi ∈ D(f j), (pi, p′i) ∈
S}. Similarly, let DT j be the reduced target at step j, i.e., the subset of DT

which has not been assigned to still pairs: DT j = DT − {p′′i ∈ DT, p′′i =

ϕ∗j (pi), (pi, p′i) ∈ S}. Then, we finally complete the assignment between

D(f j) and DT by computing the Wasserstein distance between D(f j) and

DT j, as documented in Sec. 2.3.

Note that, in the special case where the reduced target DT j is empty

(i.e., all signal pairs are still), the reduced diagram D(f j) only contains

non-signal pairs. Then, the optimal assignment can be readily obtained

(without any assignment optimization) by simply assigning each point pi

in D(f j) to its diagonal projection ∆(pi). However, from our experience,

such a perfect scenario never occurs on real-life data, at the notable excep-

tion of the very first iteration (before the data values are actually modified

by the solver). For the following iterations, many signal pairs are not still

in practice. Fig. 3.2 illustrates this with a simple 2D example involving

a multi-saddle vertex. However, in real-life data, such configurations oc-

cur very often, and cascade. Also, these configurations get significantly

more challenging in 3D. For instance, the birth and death vertices of a

given signal pair can both be multi-saddles, themselves possibly involved

with non-signal pairs to update (hence yielding perturbations in the signal

pair). In certain configurations, this can drastically alter the persistence

of the signal pairs affected by such perturbations. This is addressed by

our loss (Sec. 3.2) which enforces the preservation of the signal pairs via

assignment optimization.

3.4 Results

This section presents experimental results obtained on a computer with

two Xeon CPUs (3.0 GHz, 2x8 cores, 64GB of RAM). We implemented

our algorithm (Sec. 3.3) in C++ (with OpenMP) as a module for TTK

[TFL+
17, BMBF+

19]. We implemented the baseline optimization ap-

38 Chapter 3. A practical solver for scalar data topological simplification

proach (Sec. 3.2) by porting the original implementation by Carriere et al.

[CCG+
21] from TensorFlow/Gudhi [AAB+

15, MBGY14] to PyTorch/TTK

[PGM+
19] and by applying it to the loss described in Sec. 3.2. We chose

this approach as a baseline, since its implementation is simple and pub-

licly available, and since it provides performances comparable to alter-

natives [NM22]. In our implementations, we use the DMS algorithm

[GVT23] for persistence computation (as it is reported to provide the

best practical performance for scalar data) and the Auction algorithm

[BC91, KMN17] for the core assignment optimization, with a relative pre-

cision of 0.01, as recommended in the literature [KMN17]. Persistence

computation with DMS [GVT23] is the only step of our approach which

leverages parallelism (see [GVT23] for a detailed performance analysis).

Experiments were performed on a selection of 10 (simulated and acquired)

2D and 3D datasets extracted from public repositories [TTK20, Kla20],

with an emphasis on 3D datasets containing large filament structures (and

thus possibly, many persistent saddle pairs). The 3D datasets were resam-

pled to a common resolution (2563), to better observe runtime variations

based on the input topological complexity. Moreover, for each dataset, the

data values were normalized to the interval [0, 1], to facilitate parameter

tuning across distinct datasets.

Our algorithm is subject to two meta-parameters: the gradient step

sizes αb and αd. To adjust them, we selected as default values the ones

which minimized the runtime for our test dataset with the largest dia-

gram. This resulted in αb = αd = 0.5 (which coincides, given a persistence

pair to cancel, to a displacement of its birth and death vertices halfway

towards the other, in terms of function range). For the baseline optimiza-

tion approach (Sec. 3.2), we set the initial learning rate of Adam [KB15]

to the largest value which still enabled practical convergence for all our

datasets (specifically, 10−4). For both approaches, we set the maximum

number of iterations jmax to 1, 000 (however, it has never been reached in

our performance experiments).

3.4.1 Quantitative performance

The time complexity of each iteration of the baseline optimization is cubic

in the worst case, but quadratic in practice (Sec. 3.2). As discussed in

Sec. 3.3, our approach has the same worst case complexity, but behaves

more efficiently in practice thanks to our accelerations.

Tab. 3.1 provides an overall comparison between the baseline optimiza-

3.4. Results 39

Table 3.1 – Time performance comparison between the baseline optimization approach

(Sec. 3.2) and our solver (Sec. 3.3), for two simplification scenarios: a mild simplification

and an aggressive simplification, where the non-signal pairs are the input pairs less per-

sistent than 1% (white lines) and 45% (grey lines) of the function range, respectively. The

column N.S.S.P. reports the average percentage of non-still signal pairs (per iteration)

for our solver. The stopping condition is set to s = 0.01.

Dataset d |D(f)| |DT | Baseline (Sec. 3.2) Our solver (Sec. 3.3)
#It. Time/It (s.) Time (s.) N.S.S.P. #It. Time/It (s.) Time (s.) Speedup

Cells 2 7, 676 2, 635 89 0.58 52 0.07% 10 0.20 2 26
Ocean Vortices 2 12, 069 2, 781 87 0.61 53 8.02% 12 0.25 3 18
Aneurysm 3 38, 490 24, 725 80 29.89 2, 391 3.70% 8 11.63 93 26
Bonsai 3 168, 489 55, 464 67 56.73 3, 801 3.90% 10 13.50 135 28
Foot 3 754, 965 474, 271 60 914.47 54, 868 11.28% 4 104.25 417 132
Neocortical Layer Axon 3 765, 406 483, 791 89 735.36 65, 447 32.04% 8 263.38 2, 107 31
Dark Sky 3 1, 140, 653 774, 793 NA NA > 24h 9.08% 6 122.00 732 > 118
Backpack 3 1, 331, 362 84, 402 66 305.58 20, 168 21.46% 9 62.22 560 36
Head Aneurysm 3 1, 345, 168 234, 672 NA NA > 24h 6.68% 5 83.80 419 > 206
Chameleon 3 3, 641, 961 32, 578 55 210.51 11, 578 18.22% 8 74.75 598 19
Cells 2 7, 676 21 755 0.26 193 0.00% 167 0.19 32 6
Ocean Vortices 2 12, 069 80 474 0.26 126 0.70% 269 0.14 38 8
Aneurysm 3 38, 490 231 329 32.65 10, 743 1.38% 17 8.73 148 72
Bonsai 3 168, 489 2 483 72.47 35, 002 49.23% 65 12.26 797 44
Foot 3 754, 965 18 108 36.52 3, 944 5.05% 11 29.22 321 12
Neocortical Layer Axon 3 765, 406 174 177 12.54 2, 219 1.87% 8 15.08 121 18
Dark Sky 3 1, 140, 653 120, 332 NA NA > 24h 0.38% 7 30.73 215 > 402
Backpack 3 1, 331, 362 97 329 40.36 13, 278 2.21% 28 23.05 646 21
Head Aneurysm 3 1, 345, 168 2 97 119.90 11, 630 5.26% 19 35.99 684 17
Chameleon 3 3, 641, 961 2 NA NA > 24h 0.00% 81 28.70 2, 325 > 37

Table 3.2 – Quality comparison between the baseline optimization approach (Sec. 3.2)

and our solver (Sec. 3.3) for the parameters used in Tab. 3.1.

Dataset d Baseline (Sec. 3.2) Our solver (Sec. 3.3)
L(vg) || f − g||2 || f − g||∞ L(vg) || f − g||2 || f − g||∞

Cells 2 0.0003 0.2939 0.0054 0.0003 0.2996 0.0070
Ocean Vortices 2 0.0006 0.3710 0.0055 0.0005 0.3769 0.0074
Aneurysm 3 0.0007 0.3481 0.0063 0.0006 0.3174 0.0117
Bonsai 3 0.0064 1.0243 0.0060 0.0053 1.0541 0.0117
Foot 3 0.0326 2.0526 0.0058 0.0297 2.0483 0.0127
Neocortical Layer Axon 3 0.0271 2.0876 0.0085 0.0279 2.1435 0.0154
Dark Sky 3 NA NA NA 0.0166 1.8617 0.0148
Backpack 3 0.0339 2.4438 0.0070 0.0312 2.1991 0.0159
Head Aneurysm 3 NA NA NA 0.0750 3.7571 0.0130
Chameleon 3 0.1679 5.1264 0.0055 0.1736 4.7773 0.0143
Cells 2 0.0627 10.0828 0.1991 0.0628 9.8787 0.2397
Ocean Vortices 2 0.0547 4.8040 0.1370 0.0541 12.7392 0.4404
Aneurysm 3 1.1040 23.2228 0.2586 1.0278 14.1333 0.4205
Bonsai 3 0.6679 34.3607 0.2014 0.6651 19.0419 0.3712
Foot 3 3.3992 25.7129 0.0967 2.9832 23.7273 0.2375
Neocortical Layer Axon 3 5.5482 29.2017 0.1602 4.6222 28.1093 0.3424
Dark Sky 3 NA NA NA 87.4867 116.2727 0.5851
Backpack 3 1.0060 23.0536 0.2397 1.1978 13.8104 0.4043
Head Aneurysm 3 0.4880 16.7538 0.0873 0.4912 10.3221 0.2386
Chameleon 3 NA NA NA 0.4223 10.8036 0.2949

40 Chapter 3. A practical solver for scalar data topological simplification

tion (Sec. 3.2) and our solver (Sec. 3.3). Specifically, it compares both ap-

proaches in terms of runtime, for two realistic simplification scenarios: a

mild simplification and an aggressive simplification, where the non-signal

pairs are the input pairs less persistent than 1% (white lines) and 45%

(grey lines) of the function range, respectively. For both approaches, we

set the stopping criterion s to 0.01, such that both methods reach a simi-

lar residual loss at termination (and hence produce results of comparable

quality). This table shows that for the mild simplification scenario (white

lines), our approach produces results within minutes (at most 35). In con-

trast, the baseline approach does not produce a result after 24 hours of

computation for the largest examples. Otherwise, it still exceeds hours of

computation for diagrams of modest size. Overall, our approach results

in an average ×64 speedup for this simplification scenario. This accelera-

tion can be explained by several factors. First, the direct gradient descent

(Sec. 3.3.1) requires fewer iterations than the baseline approach (we discuss

this further in the next paragraph, presenting Tab. 3.2). Second, our ap-

proach also results in faster iterations, given the accelerations presented in

Sec. 3.3.

In practice, the overall runtime for our solver is a function of the size

of the input and target diagrams (large diagrams will lead to large assign-

ment problems). The size of the topological features in the geometrical

domain also plays a role (larger features will require more iterations). Fi-

nally, the number of still signal pairs also plays a role given our fast as-

signment update procedure (Sec. 3.3.3, a large number of still signal pairs

leads to faster assignments). For instance, the total number of pairs (input

plus target) for the Neocortical Layer Axon dataset is about 20 times larger

than that of the Aneursym dataset, and the ratio between their respective

runtime is also about 20. Moreover, the Foot and Neocortical Layer Axon

datasets have comparable overall sizes (input plus target). However, the

latter dataset results in a computation time that is ×5 larger. This can be

partly explained by the fact that the topological features are larger in this

dataset, yielding twice more iterations (hence explaining a ×2 slowdown).

Moreover, the per-iteration runtime is also ×2.5 slower (hence explaining

the overall ×5 slowdown), due the higher percentage of non-still signal

pairs, which increase the size of the assignment problem.

Similar observations can be made for the aggressive simplification sce-

nario (grey lines). Our solver compute these simplifications within min-

utes (at most 39), for the same average speedup over the baseline (×64).

Note that, for both the baseline and our solver, while the number of iter-

3.4. Results 41

Table 3.3 – Individual gains (in percentage of runtime) for each of our accelerations for

the topological simplification parameters used in Tab. 3.1.

Dataset d |D(f)| |DT | Persistence Update Assignment Update
(Sec. 3.3.2) (Sec. 3.3.3)

Cell 2 7, 676 2, 635 5.6 79.2
Ocean Vortices 2 12, 069 2, 781 −0.4 79.8
Aneurysm 3 38, 490 24, 725 41.4 24.8
Bonsai 3 168, 489 55, 464 12.1 80.6
Foot 3 754, 965 474, 271 0.2 90.9
Neocortical Layer Axon 3 765, 406 483, 791 0.0 74.6
Dark Sky 3 1, 140, 653 774, 793 3.2 96.7
Backpack 3 1, 331, 362 84, 402 1.1 74.5
Head Aneurysm 3 1, 345, 168 234, 672 1.3 93.4
Chameleon 3 3, 641, 961 32, 578 1.5 61.3
Cell 2 7, 676 21 17.9 21.9
Ocean Vortices 2 12, 069 80 14.9 41.4
Aneurysm 3 38, 490 231 54.9 7.6
Bonsai 3 168, 489 2 44.8 1.5
Foot 3 754, 965 18 30.0 −21.5
Neocortical Layer Axon 3 765, 406 174 0.1 −28.9
Dark Sky 3 1, 140, 653 120, 332 −1.3 91.6
Backpack 3 1, 331, 362 97 17.2 27.9
Head Aneurysm 3 1, 345, 168 2 8.8 67.0
Chameleon 3 3, 641, 961 2 9.0 92.8

ations increases in comparison to the mild simplification (since more and

larger features need to be simplified), iterations are significantly faster as

the assignment problems are much smaller.

The runtime gains provided by our individual accelerations is pre-

sented in Tab. 3.3. For mild simplifications (white lines), our procedure

for fast Persistence update (Sec. 3.3.2) can save up to 41.4% of overall com-

putation time, and 6.6% on average. These numbers increase to 54.9%

and 19.6% respectively for aggressive simplifications (grey lines). As more

iterations are required to simplify persistent features (Tab. 3.1), less and

less vertices are updated along the iterations (since low-persistence fea-

tures are cancelled in the early iterations), hence advantaging our fast

persistence update procedure. For mild simplifications (white lines), our

procedure for fast assignment update (Sec. 3.3.3) provides the most sub-

stantial gains, saving up to 97% of the overall computation time for the

largest target diagram, and 76% on average. For aggressive simplifications

(grey lines), the average gain decreases to 30% since assignment problems

get smaller (and so does their importance in the overall computation).

Negative entries in Tab. 3.3 indicate cases where the acceleration actually

degrades runtimes. For the fast persistence update, this happens when

the number of updated vertices is so large that their identification over-

weights the gradient computation for the non-updated vertices. Similar

remarks can be made for the fast assignment update, where the identifica-

tion of the still pairs can penalize runtime for small assignment problems.

Overall, both our accelerations (fast persistence update, Sec. 3.3.2, and fast

assignment update, Sec. 3.3.3) improve performance in both simplification

42 Chapter 3. A practical solver for scalar data topological simplification

scenarios, with the fast assignment update being more important for mild

simplifications, and the fast persistence update for aggressive ones.

Tab. 3.2 compares the quality of the output obtained with the baseline

optimization (Sec. 3.2) and our algorithm (Sec. 3.3), for the simplification

parameters used in Tab. 3.1. The quality is estimated based on the value of

the loss at termination (L(vg)), which assesses the quality of the topologi-

cal simplification. To estimate the proximity of the solution g to the input

f , we also evaluate the distances || f − g||2 (giving a global error for the en-

tire dataset) and || f − g||∞ (giving a pointwise worst case error). We refer

the reader to Appendix A for complementary quality statistics. Overall,

Tab. 3.2 shows that our approach provides comparable losses to the base-

line approach (sometimes marginally better). In terms of data fitting, our

approach also provides comparable global distances || f − g||2 (sometimes

marginally better). For the pointwise worst case error (|| f − g||∞), our

approach can result in degraded values (by a factor 2). This can be ex-

plained by the fact that, when tuning the parameters of our approach, we

optimized the gradient step size to minimize running time, hence possibly

triggering in practice bigger pointwise shifts in data values. In contrast,

the baseline approach uses the Adam [KB15] algorithm, which optimizes

step sizes along the iterations, possibly triggering milder pointwise shifts

in data values. In principle, the || f − g||∞ distance could be improved for

our solver by considering smaller step sizes, but at the expense of more

iterations.

We provide complementary quality statistics, where we now evalu-

ate the preservation of the features of interest after our simplification. For

this, Tab. 3.4 reports statistics (minimum, average, maximum) of the dis-

placement in the birth-death space (between 0 and 1) for the signal pairs,

both for a mild (white lines) and an aggressive (grey lines) simplification

based on persistence (1% and 45% of the function range, respectively).

Specifically, displacements are evaluated given the optimal assignment

(achieved by the Wasserstein distance) between DT and D(g). Overall,

this table shows that the position of the signal pairs in the birth-death

space is well constrained by our solver, with a worst displacement of

2.25 × 10−02 for a challenging example (aggressive simplification of the

Dark Sky dataset, where many multi-saddles are involved in both signal

and non-signal pairs). For all datasets, the achieved worst displacement is

negligible with regard to the employed persistence threshold (by an order

of magnitude).

3.4. Results 43

Table 3.4 – Statistics (minimum, average, maximum) of displacement in the birth-death

space (between 0 and 1) for the signal pairs. The employed simplification parameters are

those used in the Table 1 of the main manuscript (white lines: mild simplification, grey

lines: aggressive one).

Dataset d Min. Avg. Max.
Cells 2 0 0 0
Ocean Vortices 2 0 0 0
Aneurysm 3 0 1.22× 10−07 8.27× 10−04

Bonsai 3 0 4.03× 10−07 3.92× 10−03

Foot 3 0 3.28× 10−09 4.19× 10−03

Neocortical Layer Axon 3 0 1.14× 10−06 4.38× 10−03

Dark Sky 3 0 1.84× 10−06 2.01× 10−03

Backpack 3 0 2.85× 10−06 1.25× 10−03

Head Aneurysm 3 0 6.24× 10−07 1.20× 10−03

Chameleon 3 0 3.14× 10−06 1.43× 10−03

Cells 2 0 0 0
Ocean Vortices 2 0 2.99× 10−07 2.40× 10−05

Aneurysm 3 0 5.51× 10−05 1.27× 10−02

Bonsai 3 0 9.42× 10−21 1.88× 10−20

Foot 3 0 5.09× 10−21 9.17× 10−20

Neocortical Layer Axon 3 0 4.22× 10−21 7.35× 10−19

Dark Sky 3 0 1.38× 10−04 2.25× 10−02

Backpack 3 0 8.67× 10−22 8.41× 10−20

Head Aneurysm 3 0 1.06× 10−22 2.12× 10−22

Chameleon 3 0 0 0

3.4.2 Analyzing topologically simplified data

Our approach enables the direct visualization and analysis of topologically

simplified data. This is illustrated in Fig. 3.1, which shows the processing

of an acquired dataset (“Aneurysm”) representing a network of arteries.

As documented in the literature [MK16, HBMK22], this network exhibits

a typical tree-like structure, whose accurate geometrical extraction is rel-

evant for medical analysis. The filament structure of the arteries can be

simply extracted by considering the discrete integral lines [GVT23] (a.k.a.

v-paths [For98]) which connect 2-saddles to maxima and which have a

minimum function value above 0.1 (scalar fields are normalized). This

value 0.1 generates an isosurface (transparent surfaces, Fig. 3.1) which ac-

curately captures the geometry of the blood vessels. Hence, selecting the

discrete integral lines above that threshold guarantees the extraction of the

filament structures within the vessels.

As shown in Fig. 3.1, the diagram D(f) contains several saddle pairs,

corresponding to persistent 1-dimensional generators [GVT23, Iur21]

(curves colored by persistence in the inset zooms), which yields incor-

rect loops in the filament structure (which is supposed to have a tree-like

44 Chapter 3. A practical solver for scalar data topological simplification

structure [MK16, HBMK22]). To remove loops in networks of discrete

integral lines, an established topological technique, relying on standard

discrete Morse theory [For98], consists in reversing the discrete gradi-

ent [GRSW13] along saddle connectors. We recap this procedure here for

completeness. Given the persistence diagram D(f), we process its non-

signal saddle pairs in increasing order of persistence. For each saddle pair

(σb, σd), its saddle connector is constructed by following the discrete gradi-

ent of f from σd down to σb. Next, the pair of critical simplices (σb, σd) is

cancelled, in the discrete sense, by simply reversing the discrete gradient

along its saddle connector [For98] (i.e., each discrete vector is reversed to

point to the preceding co-face). Such a reversal is marked as valid if it does

not create any cycle in the discrete gradient field. The validity of a reversal

is important since invalid reversals result in discrete vector fields which no

longer describe valid scalar fields, and from which the subsequent extrac-

tion of integral lines can generate further loops (which we precisely aim

to remove). The cancellation of a saddle pair (σb, σd) is skipped if the rever-

sal of its saddle connector is not valid, or if its saddle connector does not

exist. The latter case occurs for instance for nested saddle pairs, when an

invalid reversal of a small persistence pair prevents the subsequent rever-

sal of a larger one. Finally, when all the non-signal saddle pairs have been

processed, the simplified filament structures are simply obtained from the

simplified discrete gradient, by initiating integral lines from 2-saddles up

to maxima.

However, in the example of Fig. 3.1, this saddle connector reversal pro-

cedure fails at simplifying the spurious loops in the filament structures,

while maintaining a valid discrete gradient (Fig. 3.1(b)). As discussed

in the literature [GRSW13], integral line reversal is indeed not guaran-

teed to completely simplify saddle pairs (v-path co-location [IFF15] as well

as specific cancellation orderings [GNP+
05, GDN+

07] can challenge re-

versals, the latter issue being a manifestation of the NP-hardness of the

problem [ABD+
13]). This is evaluated in the bottom left histogram, which

reports the number of skipped saddle connector reversals as a function

of the persistence of the corresponding pair. Specifically, this histogram

shows that the reversal of several high-persistence saddle pairs could not

be performed, hence the presence of large loops in the extracted filament

structures.

Our approach can be used to efficiently generate a function g which is

close to the input f and from which the removal of saddle pairs has been

optimized, while maintaining intact the rest of the features (see the result-

3.4. Results 45

Figure 3.5 – Topological simplification optimization for a challenging dataset (“Dark

Sky”: dark matter density in a cosmology simulation, (a), signal pairs: pairs with a

persistence larger than 0.25). The geometry of the cosmic web [Sou11, SPN+16] is

captured (b) by an isosurface (at isovalue 0.4) and its core filament structure is extracted

by the upward discrete integral lines, started at 2-saddles above 0.4. The latter structure

contains many small-scale loops as many, persistent saddle connector reversals could not

be performed (bottom left histogram). The local minimum g of the simplification energy

(Eq. 3.1) found by our solver (c) has a number of non-signal pairs reduced by 92%.

This results in a less cluttered visualization, as the cosmic web has a less complicated

topology (noisy connected components are removed and small scale handles are cut, inset

zooms). This also induces fewer skips of persistent saddle connector reversals (bottom

right histogram), hence simplifying more loops and revealing the main filament structure.

ing diagram D(g), Fig. 3.1). Specifically, we set as non-signal pairs all the

saddle pairs of the input, and we set as signal pairs all the others (irrespec-

tive of their persistence). This enables a direct visualization and analysis of

the topologically simplified data, where isosurface handles have been cut

(Fig. 3.1c, bottom-right zoom VS Fig. 3.1b, bottom-right zoom) and where

most spurious filament loops have been consequently simplified (Fig. 3.1,

top zoom). Note that, as shown in the bottom right histogram, our opti-

mization modifies the input data f into a function g where reversal skips

still occur. This is due to the fact that our solver identifies a local minimum

of the simplification energy (Eq. 3.1) and that, consequently, a few saddle

pairs, with low persistence, may still remain (we recall that the problem

is NP-hard [ABD+
13], see Sec. 3.4.4 for further discussions). However, the

skipped reversals which remain after our optimization (Fig. 3.1, bottom

right histogram) only involve very low persistence pairs, hence allowing

the cancellation of the largest loops overall.

Fig. 3.5 illustrates our topological simplification optimization for a

challenging dataset (“Dark Sky”: dark matter density in a cosmology sim-

ulation). As shown in the inset zooms, the isosurface capturing the cosmic

web [Sou11, SPN+
16] has a complicated topology (many noisy connected

components and handles), which challenges its visual inspection. Its core

filament structure also contains many small-scale loops since many persis-

46 Chapter 3. A practical solver for scalar data topological simplification

Figure 3.6 – Extreme simplification optimization for a challenging dataset (“Dark Sky”:

dark matter density in a cosmology simulation, (a), only one signal pair: the bar

involving the global minimum). The geometry of the cosmic web [Sou11, SPN+16] is

captured (b) by an isosurface (at isovalue 0.4) and its core filament structure is extracted

by the upward discrete integral lines, started at 2-saddles above 0.4. The latter structure

contains many small-scale loops as many, persistent saddle connector reversals could not

be performed (bottom left histogram). The local minimum g of the simplification energy

found by our solver (c) has a number of non-signal pairs reduced by 95%. This results

in a less cluttered visualization, as the cosmic web has a drastically simplified topology

(noisy connected components are removed and most handles are cut, inset zooms). This

also induces fewer skips of persistent saddle connector reversals (bottom right histogram),

here simplifying all filament loops and revealing the core filament structure.

tent saddle connector reversals could not be performed (Fig. 3.5, bottom

left histogram). Our solver provides a local minimum g to the simplifica-

tion energy (Eq. 3.1) with a number of non-signal pairs reduced by 92%.

This results in a less cluttered visualization, as the resulting cosmic web

(Fig. 3.5(c)) has a less complicated topology (noisy connected components

are removed and small scale handles are cut, inset zooms). Moreover, our

optimization modifies the data in a way that is more conducive to persis-

tent saddle connector reversals (bottom right histogram), hence simplify-

ing more loops and, thus, better revealing overall the large-scale filament

structure of the cosmic web.

We consider the challenging Dark Sky dataset (large input diagrams,

many saddle pairs, intricate geometry) and specify an extreme simplifi-

cation. In particular, all the finite persistence pairs are considered as non-

signal (bars marked with spheres at their extremities, Fig. 3.6) and only the

infinite bar involving the global minimum (cropped by convention at the

globally maximum data value, bar with an upward arrow, Fig. 3.6) is con-

sidered as a signal pair. The corresponding results are shown in Fig. 3.6.

Specifically, this figure shows that, despite this challenging dataset and ex-

treme simplification criterion, our approach still manages to simplify 95%

of the non-signal pairs, which is a slight improvement over the original

experiment reported in the Figure Fig. 3.5 of the main manuscript (92%

3.4. Results 47

for a persistence threshold of 0.25). Moreover, from a qualitative point of

view, all the filament loops have been simplified: the persistence diagram

does not contain any finite persistence pairs whose life-span crosses the

death isovalue 0.4 (dashed horizontal line). Only the infinite bar related

to the global minimum (bar with an upward arrow) crosses it. In other

words, this means that the cosmic web volume (i.e. the sublevel set for the

isovalue 0.4) is made of only one connected component and contains no

topological handles.

3.4.3 Repairing genus defects in surface processing

Our work can also be used to repair genus defects in surface processing,

where surface models, in particular when they are acquired, can include

spurious handles due to acquisition artifacts. While several approaches

have been proposed to address this issue [CJL+
18, ZCLJ20, ZCLJ22], they

typically rely on intensive automatic optimizations, aiming at selecting at

each iteration the best local simplification primitive (i.e. cutting or filling).

In contrast, our approach relies on a simpler and lightweight procedure,

which provides control to the user over the primitives to use. For this,

we consider the three-dimensional signed distance field f to the input

surface S, computed on a regular grid (i.e., f encodes for each grid vertex

v the distance to the closest point on the surface S, multiplied by −1 if

v is located within the volume enclosed by S). For such a field, the zero

level set f−1(0) coincides with S. Then, the removal of a handle in S can

be performed by creating a simplified signed distance field g, where the

corresponding saddle pair has been canceled. Finally, the zero level set

g−1(0) provides the simplified surface S′.

This process is illustrated in Fig. 3.7 where the handle of a torus is

removed. Note that, from a topological point of view, this operation can

be performed in two ways: either by cutting the handle (Fig. 3.7(b)), or by

filling it (Fig. 3.7(c)). This can be controlled in our solver by simply adjust-

ing the step sizes for the birth and death gradients (Sec. 3.3.1). Specifically,

given a saddle pair to remove pi ∈ D(f), handle cutting is obtained by set-

ting αd to zero. Then, the death vertex vid will not be modified (above the

zero level set), while only the birth vertex vib (located in the star of the

1-saddle creating the handle) will increase its value above 0, effectively

disconnecting the handle in the output surface S′. Handle filling is ob-

tained symmetrically, by setting αb to zero (effectively forcing the 2-saddle

to decrease its value below 0).

48 Chapter 3. A practical solver for scalar data topological simplification

Figure 3.7 – Handle removal on a torus example. (a) The input surface S (left) is used

to compute a 3D signed distance field f (right, color map). f contains a persistent saddle

pair (large spheres) encoding the handle of the torus and many low-persistence minimum-

saddle pairs (smaller spheres, radius scaled by persistence) which are artifacts (located

on the medial axis of S) of the sampling of the distance field (which has discontinuous

derivatives). The handle can be removed in the output surface S′ (b, c) by considering

the zero level set of a simplified field g obtained with our approach (in this example, only

the persistent generator of f with infinite persistence has been maintained). The handle

can be removed either by cutting (b) (by only using the birth gradient, Eq. 3.2) or by

filling (c) (by only using the death gradient, Eq. 3.2).

Figure 3.8 – Removal of a spurious handle from an acquired surface S (a). First, the

signed distance field f is computed from S (b). f is shown with a color map on the

clipped volume, with its critical simplices colored per dimension, with a sphere with a

radius proportional to their persistence. The extraction of the 1-dimensional persistent

generators [GVT23, Iur21] ((c), colored by persistence) reveals the existence of a short

generator in f , corresponding to a small handle defect in S (under the Pegasus front left

hoof, see inset zooms). Our framework can repair this defect by simplifying the corre-

sponding saddle pair, either by cutting ((d), by only using the birth gradient, Eq. 3.2)

or by filling ((e), by only using the death gradient, Eq. 3.2).

3.4. Results 49

Fig. 3.8 presents a realistic example of an acquired surface from a pub-

lic repository [TTK20], which contains a spurious handle, due to acqui-

sition artifacts. First, the signed distance field is computed and its 1-

dimensional persistent generators [Iur21, GVT23] are extracted. The short-

est generator corresponds to a small handle, which happens to be a genus

defect in this example. Then, the user can choose to repair this defect via

cutting or filling, resulting in a repaired surface S′ which is close to the

input S, and from which the spurious handle has been removed.

3.4.4 Limitations

Our approach is essentially numerical and, thus, suffers from the same

limitations as previous numerical methods for topological simplification

(Sec. 3.1.1). Specifically, the non-signal pairs are canceled by our approach

by decreasing their persistence to a target value of zero. However, this

decrease is ultimately limited by the employed numerical precision (typi-

cally, 10−6 for single-precision floating point values). From a strictly com-

binatorial point of view, this can result in residual pairs with an arbitrar-

ily small persistence (i.e., in the order of the numerical precision). In

principle, this drawback is common to all numerical methods (although

sometimes mitigated via smoothing). Then, when computing topological

abstractions, these residual pairs need to be removed from the computed

abstraction (e.g., with integral line reversal, Sec. 3.4.2). However, as dis-

cussed in the literature [GBHP09, GRSW13], post-process mechanisms for

simplifying topological abstractions may not guarantee a complete simpli-

fication of the abstractions either (this is another concrete implication of

the NP-hardness of the problem [ABD+
13]). However, our experiments

(Sec. 3.4.2) showed that our numerical optimization precisely helped such

combinatorial mechanisms, by pre-processing the data in a way that re-

sulted eventually in fewer persistent reversal skips (Figs. 3.1 and 3.5, right

versus left histograms).

Similar to previous persistence optimization frameworks, our ap-

proach generates a local minimum of the simplification energy (Eq. 3.1),

and thus it is not guaranteed to reach the global minimum. As a re-

minder, in 3D, a perfect reconstruction (i.e., D(g) = DT) may not exist

and finding the global minimizer of the simplification energy is NP-hard

[ABD+
13]. However, our experiments (Sec. 3.4.1) showed that our ap-

proach still generated solutions whose quality was on par with the state-

of-the-art (comparable losses and distances to the input), while providing

50 Chapter 3. A practical solver for scalar data topological simplification

substantial accelerations. Moreover, as shown in Sec. 3.4.2, these solutions

enabled the direct visualization of isosurfaces whose topology was indeed

simplified (fewer components and handles) and they were also conducive

to improved saddle connector reversals.

3.5 Summary

This chapter introduced a practical solver for topological simplification

optimization. Our solver is based on tailored accelerations, which are spe-

cific to the problem of topological simplification. Our accelerations are

simple and easy to implement, but result in significant gains in terms

of runtime, with ×60 speedups on average on our datasets over state-of-

the-art persistence optimization frameworks (with both fewer and faster

iterations), for comparable output qualities. This makes topological sim-

plification optimization practical for real-life three-dimensional datasets.

We showed that our contributions enabled a direct visualization and anal-

ysis of the topologically simplify data, where the topology of the extracted

isosurfaces was indeed simplified (fewer connected components and han-

dles). We applied our approach to the extraction of prominent filament

structures in 3D data, and showed that our pre-simplification of the data

led to practical improvements for the removal of spurious loops in fila-

ment structures. We showed that our contributions could be used to re-

pair genus defects in surface processing, where handles due to acquisition

artifacts could be easily removed, with an explicit control on the repair

primitives (cutting or filling).

4Topology Aware Neural

Interpolation of Scalar

Fields

Contents

Our Contributions in one Image 55

4.1 Context . 56

4.1.1 Related work . 57

4.1.2 Contributions . 61

4.2 Approach . 61

4.2.1 Overview . 61

4.2.2 Architecture . 62

4.2.3 Losses . 63

4.2.4 Computational details . 65

4.3 Results . 66

4.3.1 Test datasets . 66

4.3.2 Reference approaches . 68

4.3.3 Quantitative criteria . 69

4.3.4 Loss influences . 69

4.3.5 Comparisons . 70

4.3.6 Limitations . 72

4.4 Summary . 73

This chapter presents a neural scheme for the topology-aware interpo-

lation of time-varying scalar fields. Given a time-varying sequence of

53

54 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

persistence diagrams, along with a sparse temporal sampling of the corre-

sponding scalar fields, denoted as keyframes, our interpolation approach

aims at “inverting” the non-keyframe diagrams to produce plausible esti-

mations of the corresponding, missing data. For this, we rely on a neural

architecture which learns the relation from a time value to the correspond-

ing scalar field, based on the keyframe examples, and reliably extends

this relation to the non-keyframe time steps. We show how augmenting

this architecture with specific topological losses exploiting the input di-

agrams both improves the geometrical and topological reconstruction of

the non-keyframe time steps. At query time, given an input time value for

which an interpolation is desired, our approach instantaneously produces

an output, via a single propagation of the time input through the net-

work. Experiments interpolating 2D and 3D time-varying datasets show

our approach superiority, both in terms of data and topological fitting,

with regard to reference interpolation schemes.

The work presented in this chapter is currently under review for

the IEEE Workshop on Topological Data Analysis and Visualization

(TopoInVis).

55

Our Contributions in one Image

Figure 4.1 – Given a time-varying sequence of persistence diagrams (top), along with a sparse set of corresponding keyframe

scalar fields (“Input Keyframe” labels), our interpolation approach aims at “inverting” the non-keyframe diagrams and gener-

ating plausible estimations of the missing, non-keyframe scalar fields (“Our Interpolation” labels) enabling their visualization

and analysis.

56 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

4.1 Context

As computational resources and acquisition devices are becoming more

efficient and precise, modern datasets are growing in resolution and

level of details. This results in a general growth in the size of datasets

which creates challenges for their storage, processing and analysis. To

address this issue, data reduction is commonly considered, either by em-

ploying lossy compression schemes [Lin14, BRLP19] or by storing re-

duced data representations, which concisely, yet precisely, only encode

the core features of the data, possibly during data production (i.e., in-situ

[BAA+
16, ABG+

15]).

Topological Data Analysis (TDA) [EH09] precisely focuses on the ro-

bust encoding of the structural patterns of a dataset into concise topological

descriptors, whose successful applications have been documented in a va-

riety of domains and contexts [HLH+
16].

Topological descriptors are often used as a mean of data reduction,

typically by storing to disk these descriptors instead of the data it-

self. For instance, for time-varying datasets, a typical strategy [BWT+
11,

BNP+
21, FPF+

23] consists in storing the actual data at a low frequency

(resulting in the storage of a small number n of keyframes), while stor-

ing topological descriptors at a higher frequency (e.g., for a large num-

ber N ≫ n of non-keyframe time steps). Then, the produced descrip-

tors can be directly post-processed by dedicated statistical frameworks

[TMMH14, LCO18, VBT20, YWM+
19, PVDT22, PVT23, PT24], tailored to

the analysis of topological representations. However, in many scenarios,

a complete investigation might require going back to the original dataset

which initially generated a given topological descriptor, for instance, for

further visual inspection, interpretation and analysis. Then, the following

question arises: how can we reliably “invert” the construction of a topologi-

cal descriptor? (i.e., retrieve the dataset which generated it). Unfortunately,

this inverse problem is ill-posed as many distinct datasets can generate the

same topological descriptor (see Fig. 4.2). Then, further constraints need

to be considered to exploit the available data, e.g., the stored keyframes.

This work addresses this issue by presenting a topology-aware in-

terpolation approach. Given a reduced representation of an input time-

varying scalar field (i.e., the persistence diagram of each time-step and a

few keyframes), the overall goal of our work is to invert the non-keyframe

diagrams. To achieve this goal, we exploit a generative neural architecture

to interpolate the scalar field for a given time step. This network is trained

4.1. Context 57

Figure 4.2 – Scalar fields (height opposite) admitting a common persistence diagram

(center). Each hill is encoded in the diagram by a vertical bar whose length encodes the

persistence of the corresponding topological feature in the data (arrows indicate genera-

tors with infinite persistence). While the diagram encodes the list of topological features

with their birth, death and persistence, it forgets their geometrical realization in the data.

to learn the relation from the time parameter to the input time varying

scalar field, based on the keyframe examples, in order to reliably extend

this relation to the non-keyframes. Also, we show how augmenting this

architecture with specific topology-aware losses exploiting the input dia-

grams both improves the geometrical and topological reconstruction of the

non-keyframe time steps. At query time, our approach only requires as an

input the time value for which an interpolation is desired and it instanta-

neously produces an interpolated scalar field, via a single propagation of

the time through the neural network. Experiments interpolating 2D and

3D time-varying ground-truth datasets demonstrate the superiority of our

model, both in terms of data and topological fitting, with regard to pre-

vious, baseline and neural interpolation schemes providing comparable

query times.

4.1.1 Related work

This section reviews the literature related to our work, which can be clas-

sified into the following main categories.

Topological methods in visualization: The visualization community has

been investigating Topological Data Analysis (TDA) [EH09] for more than

two decades [HLH+
16], with applications to a variety of domains, includ-

ing combustion [BWT+
11, GBG+

14] fluid dynamics [KRHH11, NVBB+
22]

material sciences [GND+
07, SPD+

19], chemistry [BGL+
18, OT23], or as-

trophysics [Sou11, SPN+
16] to name a few. A key feature of TDA

is its ability to robustly extract the structural patterns present in com-

plex datasets and to efficiently represent them into concise represen-

58 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

tations. Such representations include persistence diagrams [ELZ02,

BKR14, GVT23], merge [LWW+
24] and contour trees [CSA00, GFJT19a],

Reeb graphs [BGSF08, PSBM07, GFJT19b], or Morse-Smale complexes

[GBHP08, RWS11, SN12, GBP19]. Moreover, another critical aspect of TDA

is its ability to provide multi-scale hierarchies of the above topological

data representations, enabling in consequence a multi-scale visualization,

exploration and analysis of the topological features of the data. In that

context, topological persistence [ELZ02] is an established importance mea-

sure which can be directly read from the persistence diagram and which

can be used to drive the simplification of the above topological represen-

tations.

In many application scenarios, when handling time-varying data in

scientific computing [BWT+
11, BNP+

21, FPF+
23] (in particular in-situ

[BAA+
16, ABG+

15]), these topological descriptors are often used as prox-

ies to the data for the purpose of data reduction. For instance, in the con-

text of simulating mosquito-borne disease spread, Brown et al. [BNP+
21]

store time steps of the data at a low frequency to reduce IO, while the

persistence diagram (which is orders of magnitude smaller than the orig-

inal data) is stored permanently at a higher frequency. Similar data re-

duction strategies based on the merge tree have also been documented

[BWT+
11]. Then, in a post-process, the resulting ensemble of topologi-

cal proxies can be exploited by statistical frameworks [TMMH14, LCO18,

VBT20, YWM+
19, PVDT22, PVT23, PT24] which are tailored to the anal-

ysis of topological descriptors. In this work, we focus on exploiting these

topological data representations (in particular persistence diagrams), in

conjunction with a sparse temporal sampling of the actual data, to gener-

ate plausible visualizations of the missing, unstored data, in a way that fa-

vors topological feature preservation. For this, we rely on a neural scheme

which integrates topological constraints, thanks to persistence optimiza-

tion [PSO18, GGSG20, CCG+
21, SWB21, NM22, KPLT24], as described in

Sec. 4.2. Note that several schemes have been investigated for achieving

topology-aware compression [SPCT18, LLW+
25]. However, compression

is a problem that is orthogonal to the setup studied in our work. First, com-

pressors do have access to the full input data, which eases several aspects

dealing with topological constraint enforcement and data value preserva-

tion. In contrast, our approach does not have access to the full input data

but only to a reduced representation (the persistence diagram of each time

step, as well as a few keyframes). Second, compression could be used in

4.1. Context 59

conjuction to our work, e.g., by using topology-aware compressors to store

the keyframes.

Neural methods for interpolation: The problem of interpolating fields in

time appears frequently in both vision and visualization.

In computer vision, the idea of interpolating video frames from a se-

quence of images is a well known research topic, showing up applications

such as producing slow-motion videos, temporal upsampling, and video

compression. A recent survey by Dong et al. [DOD23] categorizes ap-

proaches into two high level categories: flow-based methods (which rely

on an estimation of optical flow [LK81]) and kernel-based methods (which

rely on evaluating differences in a fixed neighborhood of each pixel). This

dichotomy is conceptually similar to Lagrangian vs. Eulerian methods, as

observed by Meyer et al. [MWZ+
15] who also propose looking at phase-

based methods for video interpolation.

When working in the setting of video, there are sharp differences than

one might consider for field data. Typically, video footage is assumed to

be objects moving around in a scene, and thus it is reasonable to use an

optical-flow based model that tracks the trajectories and velocities of in-

dividual pixels (as object samples). Techniques to compute optical flow

have seen significant advances when using deep learning methods such

as FlowNet [DFI+15, IMS+17], PWC-Net [SYLK18], and RAFT [TD20].

While these form an impressive backbone to many video interpolation

techniques [JSJ+18, BLM+
19, LXS+20, NL20, PKLK20, PLK21, HZH+

22,

RKT+
22], they also can come at the cost of complex optimization proce-

dures. Because of the framing of bidirectional flow, often these methods

are limited to synthesizing single (or a fixed number of) frames between

two input frames, and they also make relatively strong assumptions (rea-

sonable for videos of objects) that pixel movement should be captured

with flow.

Kernel-based methods [LKC+
20, NML17, CKH+

20, KPCT23], focus in-

stead on localized difference in pixel values within a neighborhood, but as

a result often cannot estimate motion accurately if between-frame move-

ment is larger than the kernel size. The method VideoINR considers inter-

polating videos in both space and time simultaneously [CCL+
22]. Closely

related to our approach is the idea of modeling a video as a function in

time, as proposed by Chen et al. in NeRV [CHW+
21]. We also consider

the idea of modeling a time-varying field as a network conditioned to pro-

duce an entire frame given a time step; however, for our work we model

the “frame” as a 3D volume, and we guide the optimization of the net-

60 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

work with a topological loss. Notably, recent work in visualization has

also built upon NeRV, such as NeRVI [GCW23] and FCNR [LGW24], but

these works focus on building neural models for rendered images (2D) of

time-varying volumes, rather than modeling the volume itself.

While most applications in computer vision are limited to 2D + time,

some of these methods have been extended to 3D + time images, particu-

larly coming from medical imaging [GBA+
20, WLC+

21, WWY+
20]. Yin et

al. considered adapting some of the above methods directly to the setting

of coronary angiography [YLW+
21].

More generally, to address modeling volumetric data, in visualization

numerous authors have begun to consider machine learning methods for

time-varying volumes. TSR-TVD is recent work in this space utilizing

recurrent generative models for temporal super resolution [HW19]. Han

et al. later considered the generalized problem of spatio-temporal super-

resolution in STNet [HZCW21]. Both of these methods suffer from long

training times and can only produce a fixed temporal scale factor, suffering

from the same limitations as many video interpolation methods. STSRNet

employs an two-stage framework using optical flow for spatial-temporal

super resolution [ASS+21]. Recently, FLINT [GRF24] also used optical

flow for temporal super resolution, building upon RIFE [HZH+
22].

Following the introduction of implicit neural representation (INRs)

to the visualization community for volume compression by Lu et

al. [LJLB21], numerous authors considered their use in other applica-

tions. CoordNet leveraged INRs for multiple visualization tasks (includ-

ing spatio-temporal super resolution and visualization synthesis) for time-

varying ensembles [HW22]. While this approach produced a generalized

framework, to address large training times and model sizes, different

authors considered using knowledge distillation for either learning hy-

pernetworks [WBCM23] or compressed models [HZB23] with CoordNet

serving as the teacher model. FFEINR [JBY24] considered an INR for joint

spatio-temporal super resolution based on VideoINR [CCL+
22]. Finally,

STSR-INR is a recent neural method for spatio-temporal super resolution,

supporting multivariate ensemble data [TW24]. We consider STSR-INR

as a representative example of state-of-the-art INRs to compare though,

although it differs from our work in that it does not explicitly consider a

loss based on topological features. Including such a loss directly into a

coordinate-based network (that predicts positional samples of the field in

batches, rather than an entire volume) would require a significantly more

costly loss function.

4.2. Approach 61

4.1.2 Contributions

This chapter makes the following new contributions:

1. An approach combining (i) a generative neural model for scalar field

interpolation with (ii) topological losses based on persistence dia-

grams, for constraining the topology and geometry of the output

interpolations.

2. A TTK/PyTorch implementation for reproducibility.

4.2 Approach

This section presents our overall interpolation technique, given an input

time-varying sequence of persistence diagrams, along with a sparse tem-

poral sampling of the corresponding scalar fields. While the neural net-

work architecture exploited in our approach is typical of related work

[CHW+
21], we still document its specifications in Sec. 4.2.2 for complete-

ness and reproducibility purposes.

4.2.1 Overview

Figure 4.3 – TimeToScalarField architecture. An input value t is encoded using sinu-

soidal positional encoding and projected through a fully connected layer into a latent 3D

tensor of size C0 × 8× 8× 8, where C0 denotes the initial number of channels. This ten-

sor is processed by a CNN decoder composed of four sequential blocks, each consisting of:

(i) trilinear upsampling (by a factor of 2), (ii) 3D convolution (with kernel size 3× 3× 3),

(iii) instance normalization, (iv) ReLU activation, and (v) a residual block (ResBlock3D,

[HZRS16]). The spatial resolution is progressively increased while the number of chan-

nels is reduced. A final convolution followed by a Sigmoid activation produces the output

volume (here, with resolution 1283).

Our approach relies on a generative neural network architecture, re-

ferred to in the remainder as TimeToScalarField. It is presented in Sec. 4.2.2

62 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

and schematically illustrated in Fig. 4.3. It takes as an input a time pa-

rameter value t ∈ [0, 1], and generates a scalar data vector v f (t) ∈ Rnv

defining a scalar field f (t) on a cubical complex C (i.e., a regular grid)

with dimensions cx, cy, cz assumed to be multiples of powers of two (i.e.,

nv = cx × cy × cz).

The training of this architecture is performed on the N time-steps of

the input temporal sequence, specifically with:

• the n≪ N keyframe scalar fields and persistence diagrams, and

• the (N− n) non-keyframe persistence diagrams (for which the scalar

fields are not given).

Note that the interpolation of distinct input temporal sequences requires

the training of distinct networks. The training is achieved by minimizing

the overall loss presented in Sec. 4.2.3. In particular, this optimization is

carried out by stochastic gradient descent [KB15], relative to the gradi-

ent of the training loss, obtained via automatic differentiation [PGM+
19].

Note that for the (N− n) non-keyframes, the corresponding scalar data is

not available (only the persistence diagrams are available). Therefore, the

loss terms involving scalar fields (e.g., Mean Squared Error, MSE) are set to

zero for non-keyframe time values (see Sec. 4.2.3).

At query time, the time t ∈ [0, 1] for which an interpolation is desired

is presented to the input of the trained neural network, which propagates

it to return the vector v f (t), defining the output scalar field f (t) : C → R.

4.2.2 Architecture

The TimeToScalarField architecture (Fig. 4.3) is designed to generate spa-

tially structured scalar fields from time values. It includes (i) a time pro-

jection and (ii) a convolutional neural network (CNN) decoder.

Time projection: The input time value t ∈ [0, 1] is first presented to a

positional encoding (PE) layer [GAG+
17, VSP+

17] as it is often reported

(and confirmed by our experiments) to improve temporal coherence. This

layer is fixed (i.e., not optimized) and simply maps t to a high-dimensional

vector PE(t) ∈ RT. Each entry i of this vector is a sinusoidal function of t,

with increasing frequencies for increasing values of i [VSP+
17]:

[
PE(t)

]
2i = sin(2πt/10, 0002i/T)[

PE(t)
]

2i+1 = cos(2πt/10, 0002i/T)
.

4.2. Approach 63

This first positional encoding PE(t) is then projected into a higher dimen-

sional latent space RC0×r0×r0×r0 via sequential fully connected layers with

ReLU activations (“Reshape” layer, Fig. 4.3). This projection enriches the

latent representation and provides a robust foundation for the subsequent

decoding. Such a re-projection approach has been widely validated in con-

ditional generative frameworks [IZZE17]. The output of that layer forms

the input for the subsequent CNN decoder.

CNN decoder: Our CNN decoder (Fig. 4.3, right) reconstructs the output

data progressively through successive upsampling stages. The decoder

starts with a coarse resolution (r0× r0× r0 in 3D and r0× r0 in 2D) over C0

channels (i.e., C0 instances of the optimization, started at distinct random

initializations). As recommended in the CNN literature, C0 is progres-

sively decreased via channel-wise filtering at each stage i into Ci, until

reaching 1 (see Sec. 4.3.1 for further discussions). The initial resolution

r0 is multiplied by 2 at each stage i along each dimension until reaching

the input resolution (i.e., cx × cy × cz). Specifically, each processing block i

(dashed boxes in Fig. 4.3) consists of:

1. an upsampling phase (with bilinear and trilinear interpolants in 2D

and 3D respectively),

2. a convolutional block (with kernel sizes 3× 3 and 3× 3× 3 in 2D

and 3D respectively),

3. instance normalization [UVL16] (to reduce overfitting and improve

generalization)

4. a non-linear activation (ReLU) and

5. a residual block [HZRS16] (to stabilize the training and mitigate van-

ishing gradient issues often encountered in deep CNNs).

4.2.3 Losses

Given a batch of input values t, the output set of predictions provided by

the neural network are evaluated with the following overall loss:

L = LMSE + αL∇ + βLCV + γLW2 .

It is composed of four terms, detailed below.

Data fitting: This term is the traditional Mean Squared Error (MSE) which

evaluates, only for the n keyframes (it is 0 otherwise), the fitting of each

64 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

prediction v f (tk) to its training keyframe fk:

LMSE =
1
n

n

∑
k=1

1
nv

nv

∑
j=1
||v f (tk)(vj)− fk(vj)||22.

Gradient fitting: To improve the geometrical preservation of fine scale

details, an additional term is considered, only for the n keyframe timesteps

(it is set to 0 otherwise), to evaluate the fitting of the gradient of each

network prediction v f (tk) to that of its training keyframe fk:

L∇ =
1
n

n

∑
k=1

1
nv

nv

∑
j=1

nd

∑
i=1
L∇1

((
∇v f (tk)(vj)

)
i,
(
∇ fk(vj)

)
i

)
,

where nd is the dimensionality of the dataset (in our experiments, 2 or 3),

where ∇ is the vector formed by the partial derivatives of the scalar field

at a vertex vj in the geometrical domain C, and where L∇1 is the so-called

smooth L1 loss [Gir15] (which presents the practical interest of the L1 norm,

while still being differentiable in 0):

L∇1(x, y) =

0.5(x− y)2, if |x− y| < 1,

|x− y| − 0.5, otherwise.

Critical values: For each of its bars, in addition to its birth and death val-

ues, the persistence diagram also typically encodes in practice the identi-

fiers vb and vd of the vertices respectively implied in the birth and death

of the corresponding topological feature (Sec. 2.2). The set of all birth and

death vertices form the critical points of the underlying piecewise linear

scalar field [Ban67, GVT23]. Specifically, the scalar value of a birth (respec-

tively death) vertex vb (respectively vd) is given by the birth (respectively

death) of its bar in the diagram. This information, which is available for all

the N timesteps, can be re-used to enforce the scalar value at the precise

location of each critical point, helping preserve the actual location of the

topological features in the geometrical domain C (persistence alone forgets

the geometrical realization of the data, Fig. 4.2). This can be achieved with

the following loss, which evaluates, for each prediction v f (tk), the fitting

between the pointwise value v f (tk)(vj) and the corresponding value fk(vj)

given by the input persistence diagram Dk for each vertex vj in the set of

critical points CPk of fk:

LCV =
1
N

N

∑
k=1

1
nCPk

nCk

∑
j=1
||v f (tk)(vj)− f j(vj)||22.

Topology correction: To enforce topological preservation, we evaluate the

topological fitting between the diagrams D(v f (tk)) and their target inputs

4.2. Approach 65

Dk with the Wasserstein distance (Sec. 2.3):

LW2 =
1
N

N

∑
k=1
W2

(
D(v f (tk)),Dk

)
.

This loss effectively quantifies and penalizes topological errors. Since the

Wasserstein distance is a definable function of persistence [CCG+
21], it

can be used within the optimization framework from Sec. 2.4 (i.e., E =

LW2), with guaranteed convergence [DDKL20, CCG+
21], in particular in

conjunction with the above losses, which are convex and differentiable.

4.2.4 Computational details

This section provides practical details for the training of the model pre-

sented in Sec. 4.2.2 with regard to the overall loss described in Sec. 4.2.3.

The training is organized into two phases:

1. scalar field training (with the following loss weights, Sec. 4.2.3: α =

0.1, β = 1 and γ = 0) and

2. topology correction (with loss weights: α = 0, β = 1, γ = 1).

This two-phase strategy is motivated by the computational effort required

by the topology correction step (which involves the computation of a persis-

tence diagram at each iteration). Then, this strategy first learns quickly a

plausible geometry for the missing scalar fields (scalar field training) prior

to optimizing their topology with more expensive computational efforts

(topology correction). Also, from a practical standpoint, our initial experi-

ments reported that this two-phase strategy improved the convergence of

the training.

For each phase, the entire input (N diagrams, n keyframes) is pre-

sented to the network at each epoch, for a number n1 and n2 of epochs

for the two phases respectively (see Sec. 4.3.1 for further discussions). The

purpose of this decomposition is to first generate a good estimation of the

scalar fields in phase 1, prior to refining their topology in phase 2 (which

is significantly more expensive computationally). Specifically, in phase 2,

the last layer of temporal projection as well as the first block of the CNN

decoder are frozen, in order to maintain through phase 2 the large scale

details learned in phase 1. Also, to mitigate overfitting and improve gen-

eralization, dropout regularization [WZZ+
13] is used, omitting randomly

the update of a network weight, with a probability set to 0.1.

Each epoch of topology correction (phase 2) requires the computa-

tion of N persistence diargams D(v f (tj)) as well as the estimation of the

66 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

Wasserstein distances to their input targets Dj, which is done in practice

in quadratic time (with the number of vertices nv in the output grid). To

accelerate this process, we prune each input target diagram Dj by remov-

ing its bars with a persistence (Sec. 2.2) smaller than 1% of its largest bar,

which is a typical persistence thresholding in the applications. We prune

similarly D(v f (tj)) and fix the assignment of the pruned bars to the diag-

onal (which is equivalent to the destruction of these noisy features). This

two-stage pruning reduces the size of the diagrams and drastically accel-

erates the optimal assignment optimization at the basis of the Wasserstein

distance computation (Sec. 2.3). Finally, we use shared-memory paral-

lelism to compute each diagram (and its distance to its target) in a distinct

task.

The minimization of the overall loss (Sec. 4.2.3) is performed with the

Adam solver [KB15] (with weight decay set at 10−6, to mitigate overfit-

ting), with a relatively low initial learning rate to favor a stable optimiza-

tion (see Sec. 4.3.1 for numerical values).

Finally, this architecture (Sec. 4.2.2) is subject to several meta-

parameters which we adjusted empirically, e.g., T = 128, r0 = 8 (see

Sec. 4.3.1, for dataset specific parameters).

4.3 Results

This section presents experimental results obtained with a Py-

Torch [PGM+
19] implementation of our approach, using TTK

[TFL+
17, BMBF+

19] (for persistence diagram computation and match-

ing). Experiments were performed in a Google Colab environment, with

an Nvidia A100-SXM4 GPU (RAM: 40 GB) and an Intel Xeon CPU (2.2

GHz, 6 cores, RAM: 80 GB).

4.3.1 Test datasets

Our experiments include both synthetic and real-life time-varying 2D and

3D scalar fields. For convenience, the considered 2D (respectively 3D)

datasets have all been resampled to an initial resolution of 5122 (respec-

tively 1283). Moreover, to replicate a setting that is typical of in-situ data

production [BWT+
11, BNP+

21, FPF+
23], we selected as keyframes 10% of

the time steps (i.e., n = N/10), uniformly distributed in the time interval

[0, 1]. The remaining 90% of the time steps were considered as ground-

4.3. Results 67

truth data (not seen by the model during training). Specifically, we con-

sidered the following datasets.

Gaussian mixture: This synthetic 2D dataset counts N = 180 time steps

representing a mixture of six Gaussians, where the Gaussian centers (cap-

tured by persistent maxima) evolve through time. Specifically, to evaluate

the robustness of our method to value changes as well as feature displace-

ments, this dataset is decomposed into segments where only the weights

of a few Gaussians evolve (i.e., making hills appear or disappear in the

corresponding terrain), segments where only the center positions for a

few Gaussians evolve (i.e., displacing hills in the corresponding terrain)

and segments where both phenomena occur.

Mixing vortices: This 2D dataset counts N = 150 time steps and rep-

resents the vorticity (measured as the orthogonal curl component) of a

2D flow generating a von Karman street (see [TTK20] for downloads).

This dataset has the particularity to model a 2D domain with boundaries.

Then, in a first segment, the vortices of the street (captured by persistent

extrema) follow a typical, common translation motion. However, in a sec-

ond segment, the vortices hit the boundary and consequently start to mix

together in a complicated, turbulent, whirling pattern.

Isabel: This 3D dataset counts N = 48 time steps representing the evolu-

tion of wind velocity for the Isabel hurricane [WBKS04]. To capture wind

regions interacting with the boundary of the domain, we will consider

as input scalar field the opposite of the wind velocity. Then, regions as-

sociated with high winds will be captured by persistent minima of this

opposite velocity. In particular, the eye of the hurricane travels through

the domain into several stages (formation, drift, and landfall).

Asteroid impact: This 3D dataset counts N = 50 timesteps and represents

the impact of an asteroid with the sea at the surface of the Earth [PG18].

The considered scalar field is matter density, which distinguishes well the

asteroid from the water and the ambient air in this simulation. In this

dataset, the trajectory of the asteroid as well as the topological features

resulting from the impact with the sea are captured from a topological

point of view by persistent maxima.

Since these datasets exhibit distinct levels of details in terms of ge-

ometrical features and temporal variability, several meta-parameters of

our approach were empirically adjusted on a per dataset basis (Tab. 4.1).

Fig. 4.4 provides curves plotting the corresponding loss, for each dataset.

68 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

Table 4.1 – Meta-parameters adjusted empirically to account for the variability in geo-

metrical/temporal complexity across our datasets.

Dataset C0 C1 C2 C3 C4 C5 C6 Learning rate n1 n2

Gaussian mixture (2D) 256 128 64 64 32 16 8 0.5× 10−3
6000 100

Mixing vortices (2D) 256 128 64 64 32 16 8 0.5× 10−3
6000 100

Isabel (3D) 128 64 32 32 16 – – 10−3
3000 100

Asteroid impact (3D) 512 256 128 64 16 – – 10−4
3000 100

Figure 4.4 – Loss evolution during scalar field training (phase 1, top) and topology

correction (phase 2, bottom) for our datasets (from left to right: Gaussian mixture,

Mixing vortices, Isabel, Asteroid impact).

4.3.2 Reference approaches

We compare our technique to two approaches, selected based on their

query time, which is comparable to ours (typically, below a second in

practice). First, we consider as baseline the traditional pointwise, linear

interpolation with regard to time. This scheme requires the evaluation of

a linear equation at each vertex of the input grid. Next, among the variety

of neural approaches introduced in the visualization literature, we con-

sidered the approach STSR-INR [TW24], which is a recent representative

of neural methods for spatio-temporal super resolution. In particular, we

used the implementation provided by the authors, set up to its default

recommended parameters, except for:

• the epoch number (increased to obtain similar training times);

• the model size (increased to obtain sizes also similar to ours).

The purpose of these modifications was to provide the same computa-

tional resources to both methods (STSR-INR [TW24] and ours). Finally,

note that in both cases (linear interpolation and STSR-INR), these refer-

ence approaches have only access to the keyframe data.

4.3. Results 69

4.3.3 Quantitative criteria

We evaluate the quantitative quality of the resulting interpolations, for the

non-keyframes only, in the light of two fitting terms. First, we evaluate

a data fitting term with the traditional Peak Signal-to-Noise Ratio (PSNR).

Second, we evaluate a topological fitting term, which measures the topolog-

ical accuracy of an interpolation with regard to the input target diagram,

based on the Wasserstein distance (Sec. 2.3).

For information, we also report indicators related to the computational

resources used in our experiments, namely model size (in MB) and train-

ing time (in seconds).

4.3.4 Loss influences

Figure 4.5 – Influence of our individual loss terms (Sec. 4.2.3) on the interpolation.

Top: Three time steps of the Gaussian mixture dataset (spheres: local maxima, colored

and scaled by persistence). From t0 to t2, a Gaussian center is moving down, vertically

(purple arrow, t0). Bottom: Interpolations obtained for the time step t1 with different

loss blending coefficients (Sec. 4.2.4), from left to right: (i) α = 0.1, β = γ = 0 (no

topological loss), (ii) α = 0.1, β = 1, γ = 0 (critical value enforcement), (iii) α = 0.1,

β = 1, γ = 1 (topology correction). Without our topological losses (bottom, left), the

interpolation exhibits the superposition artifact typical of linear interpolation, with the

moving Gaussian being replaced by two Gaussians of decreased height (at the start and

end points of the displacement). Critical value enforcement (bottom, center) addresses

this issue, resulting in one maximum in the correct location, while topology correction

(bottom, right) improves the final geometry and topology.

70 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

We start the practical analysis of our method by investigating the ef-

fects of the individual terms of our loss (presented in Sec. 4.2.3). Fig. 4.5

presents interpolation results on our synthetic dataset (Gaussian mixture)

for various loss blending coefficients. Specifically, this figure focuses on

a temporal sequence where a Gaussian center is moving down vertically

(purple arrow). When using only the MSE and gradient losses (bottom,

left), our method results in interpolations with a superposition artifact that

is typical of linear interpolation: the moving Gaussian has been replaced

by two Gaussians of decreased height (see the two maxima), at the start

and end points of the displacement. The introduction of our loss based

on the critical values reported by the input diagrams greatly contributes

to addressing this issue (bottom, center). Specifically, it results in a persis-

tent maximum, at the right value and at the right location. However, the

corresponding feature exhibits a ridge-like geometry (dark curve) which

does not resemble the original feature (a Gaussian, top-center). The intro-

duction of topology correction (based on the Wasserstein distance to the

input diagram, bottom right) further improves topological preservation

(in terms of Wasserstein distance), as well as, importantly, the geometry

of the prediction: the feature associated to the moving maximum exhibits

a shape that is closer visually to the original Gaussian. This illustrates

that our topological losses, on top of improving the preservation of the

features of interest, also contribute to improving the overall geometry of

the prediction.

4.3.5 Comparisons

This section provides a quantitative and qualitative comparison between

our method and reference approaches (Sec. 4.3.2).

Table 4.2 – Quantitative scores (averaged over all non-keyframe timesteps) over our test

datasets for the linear interpolation, STSR-INR [TW24] and our method. For each score,

the best value is reported in bold. Model sizes and training times are also reported.

Criterion Method Gaussian Mixture Mixing vortices Isabel Asteroid Impact

Linear Interpolation 37.44 26.20 29.56 20.81

PSNR (↑) STSR-INR [TW24] 36.18 26.17 29.05 20.06

Our method 38.58 29.28 32.41 22.51

Linear Interpolation 0.11 0.53 0.83 4.56

W2 (↓) STSR-INR [TW24] 0.09 0.57 0.79 6.27

Our method 0.01 0.29 0.66 2.83

Size (MB)
STSR-INR [TW24] 11 11 33 157

Our method 11 11 33 157

Training (h.)
STSR-INR [TW24] 3.33 3.31 6.76 9.69

Our method 3.20 2.76 5.70 8.96

4.3. Results 71

Tab. 4.2 provides an overview of the quantitative scores (averaged over

all non-keyframe time steps) over our test datasets for the considered

methods. This table shows that our method, by design, provides the best

topological accuracy (as measured by the Wasserstein distance to the input

diagrams). As discussed in Sec. 4.3.4, our topological losses (Sec. 4.2.3),

on top of contributing to the preservation of topological features, also con-

tribute to improving the geometry of the prediction. This is illustrated by

the PSNR scores of our method, which are superior to those of the refer-

ence approaches.

Figure 4.6 – Comparison of temporal interpolations on the Mixing vortices dataset (from

left to right: ground-truth, linear interpolation, STSR-INR [TW24] and our method).

Persistent extrema are reported as colored spheres (blue: minima, purple: maxima), ex-

trema of intermedia persistence are reported as white spheres. The persistence diagrams

are reported in the bottom insets. The linear interpolation exhibits a typical superpo-

sition artifact, where the two keyframes used for the interpolation are superposed on

top of each other. This artifact is addressed by STSR-INR, with an improved PSNR. Our

method further improves PSNR, while improving topological accuracy (in particular with

fewer noisy bars in the diagram).

Figure 4.7 – Comparison of temporal interpolations on the Isabel dataset (from left to

right: ground-truth, linear interpolation, STSR-INR [TW24] and our method). Persis-

tent minima of the opposite wind velocity are reported as purple spheres. A few isosurfaces

are shown to represent the geometry of the data. The persistence diagrams are reported

in the bottom insets. The linear interpolation exhibits its typical superposition arti-

fact (similarly to Fig. 4.6), where the hurricane eyes from two keyframes are superposed.

Moreover, it fails at capturing certain high wind regions (light purple surface, top). Here,

STSR-INR produces a reconstruction with a degraded PSNR. Our method provides the

best PSNR and the best topological accuracy.

72 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

Figure 4.8 – Comparison of temporal interpolations on the Asteroid impact dataset

(from left to right: ground-truth, linear interpolation, STSR-INR [TW24] and our

method). Persistent maxima are reported as purple spheres. The geometry of the data

is represented via volume rendering and isosurfacing. The persistence diagrams are re-

ported in the bottom insets. The linear interpolation exhibits its typical superposition

artifact, where the two keyframes used for the interpolation are superposed on top of each

other (similarly to Fig. 4.6). Here, STSR-INR produces a result with a degraded PSNR.

Our method provides the indicators scores (PSNR and topological accuracy), and it pro-

vides the result which conforms best visually to the ground truth.

Qualitative comparisons are provided in Figs. 4.6, 4.7, 4.8. Overall,

these figures show that the linear interpolation suffers from a typical su-

perposition artifact, where the two keyframes used for the interpolation are

superposed on top of each other. This is particularly severe when fea-

tures of interest are moving within the domain across time (which occurs

in all our test datasets). This is partly addressed, sometimes successfully

(Fig. 4.6), sometimes less successfully (Fig. 4.8), by the STSR-INR [TW24]

approach, which improves PSNR in some case (Fig. 4.6). In all cases, our

approach better preserves, by design, the topological features, resulting in

a superior topological accuracy. Also, in several instances (Figs. 4.7, 4.8),

our method provides the result which clearly conforms best visually (in

terms of geometry) to the ground truth (confirming the observations of

Sec. 4.3.4).

In principle, the results of the reference approaches (e.g., STSR-INR

[TW24]), could be post-processed to improve their topological accuracy.

This can be done, by example, by using the approach by Kissi et al.

[KPLT24]. However, as shown in Fig. 4.9, such a post-processing step

is non-negligible in terms of runtime, which significantly degrades inter-

polation query response times. In contrast, at query time, our approach

provides a result with comparable topological accuracy instantaneously.

4.3.6 Limitations

An obvious limitation of our work, which is intrinsic to neural approaches

in general (such as STSR-INR [TW24]), is the computational effort required

4.4. Summary 73

Figure 4.9 – Comparing STSR-INR with a topological optimization post-process

[KPLT24] (center) to the ground truth (left) and our method (right). To obtain a topo-

logical accuracy comparable to our method, the predictions provided by STSR-INR need

to undergo a non-negligible optimization post-process (56 seconds) while our method is

instantaneous.

for training such models, in the range of hours of computation (Tab. 4.2).

However, for applications such as in-situ computing [BAA+
16, ABG+

15],

for which data storage can be a more important concern than computa-

tional effort, we believe our data reduction strategy to be still relevant, as

assessed by our model sizes (Tab. 4.2).

Another limitation that we observed was the need for larger models

for the datasets exhibiting the most geometrical and temporal complex-

ity (Tabs. 4.1, 4.2). While it is understandable that more parameters are

required in the model to capture this variability, this model size increase

negatively impacts training computation times as well as model storage.

Similarly, larger output sizes may require in general more iterations, them-

selves being more computationally expensive (as each iteration involves

the computation of the persistence diagram).

Finally, our approach is currently restricted to regular grids, which

is the only data representation supported by our CNN-based decoding.

Alternative generative architectures would need to be considered for more

generic inputs, e.g., scalar fields defined on tetrahedral meshes.

4.4 Summary

This chapter presented a neural approach for the topology aware inter-

polation of scalar fields. Our work was motivated by a data model often

encountered in in-situ computing [BAA+
16, ABG+

15], where snapshots

of the considered time-varying data are only saved at a low frequency (ev-

ery n keyframes) and where reduced representations, such as topological

descriptors, are stored at a higher frequency [BWT+
11, BNP+

21, FPF+
23]

74 Chapter 4. Topology Aware Neural Interpolation of Scalar Fields

(every N ≫ n steps). Specifically, given an input sequence of persistence

diagrams and a sparse temporal sampling of the corresponding data, our

approach “inverts” the non-keyframe diagrams to produce plausible esti-

mations of the missing data. Extensive experiments showed the superior-

ity of our method over reference approaches for preserving the topological

features of interest along the interpolation. Interestingly, our experiments

also revealed that our topology-aware losses could also significantly con-

tribute to improving the geometry of the interpolated data.

We believe our work opens several research avenues, in particular,

thanks to its instantaneous query time, for the interactive exploration

of ensembles of topological descriptors, as studied in topology-tailored

statistical frameworks [TMMH14, LCO18, VBT20, YWM+
19, PVDT22,

PVT23, PT24]. However, a multidimensional extension of approach (to

account for more ensemble parameters than simply time) would need to

be investigated.

5Conclusion

This thesis addressed the central challenge posed by the increasing size,

resolution, and structural complexity of scalar datasets, which create

significant difficulties in terms of their storage, analysis, and visualization.

To mitigate these challenges, topological descriptors such as persistence

diagrams offer concise and robust representations that effectively capture

the main topological structures of interest within the data. However,

although they characterize these structures well, persistence diagrams

alone are not sufficient to fully apprehend the geometric complexity of

the data, which often requires additional information or reconstruction

techniques to be properly understood.

To overcome this fundamental limitation, the thesis introduced two

complementary approaches for efficient topological simplification and

reconstruction of scalar data.

Firstly, we proposed a specialized numerical optimization framework

for topological simplification, significantly improving computational ef-

ficiency (up to ×60 faster than state-of-the-art methods) through tailored

algorithmic accelerations. This allowed practical and precise simplifica-

tion of complex three-dimensional datasets, effectively removing artifacts

such as spurious loops in filamentary structures or topological defects on

surfaces, while preserving essential topological features.

Secondly, to tackle the reconstruction challenge explicitly, we pre-

sented a neural interpolation framework that leverages sparse temporal

sampling (keyframes) and associated topological descriptors to recon-

struct intermediate scalar fields. Incorporating topology-aware loss func-

tions, our approach outperformed existing techniques in both topological

and geometric accuracy, demonstrating particular relevance in in-situ

77

78 Chapter 5. Conclusion

computational contexts where only partial data snapshots are available.

Together, these two contributions provide a coherent methodology for

addressing the initial challenge of efficiently managing large-scale, topo-

logically complex scalar data. By integrating topological constraints into

optimization and machine learning frameworks, they significantly en-

hance the capabilities of topological data analysis tools, opening promis-

ing new directions for the interactive exploration, visualization, and

analysis of large datasets. Future work could extend these methodologies

to more general persistence optimization problems, broader classes of

multidimensional data, and real-time interactive contexts.

Ultimately, the methods developed in this thesis not only advance

computational tools for topological analysis but also offer promising ap-

plications in critical domains such as medical imaging, fluid dynamics,

and climate modeling, areas in which understanding and preserving

topological structures is often crucial. For instance, we illustrate the

relevance of our methods in medical imaging through the extraction and

simplification of arterial networks (Fig. 3.1), in fluid dynamics with the

Mixing vortices dataset (Fig. 4.6), and in climate modeling via the Isabel

hurricane dataset and the Asteroid impact dataset (Fig. 4.7 and Fig. 4.8).

These examples highlight how our approach can capture and preserve

essential topological features across a wide range of real-world scenarios.

5.1 Summary of Contributions

This thesis introduced two novel methodological contributions designed

to address the challenges posed by the growing complexity of scalar

datasets through efficient topological simplification and accurate recon-

struction methods. Both contributions are accompanied by practical, re-

producible implementations (C++ and Python), enabling direct adoption

by the scientific community:

Topological Simplification Optimization

An efficient solver tailored for topological simplification of scalar fields,

featuring optimized procedures for rapid updates of persistence diagrams

and pair assignments. These accelerations enable topological simplifica-

tion to be effectively applied to real-world datasets. The approach was

5.2. Limitations 79

demonstrated through applications including direct visualization of sim-

plified data, extraction of filament structures with reduced spurious loops,

and controlled genus repair of surfaces. A reproducible C++ implementa-

tion is provided, and experiments from this work are publicly accessible

online via the TTK website.

Neural Topology-Aware Interpolation

A generative neural architecture specifically designed for topology-guided

temporal interpolation of scalar fields. This model employs tailored,

topology-aware losses informed by sequences of persistence diagrams,

improving the preservation and reconstruction of key topological features

during interpolation. A reproducible implementation using TTK and

PyTorch is also available.

Together, these contributions directly address the central challenge

initially posed by the increasing complexity and size of modern scalar

datasets. By combining topological simplification techniques with neural

interpolation methods that incorporate topological constraints, we provide

practical and robust solutions for efficiently managing scalar data through

compact yet meaningful representations. Ultimately, this integrated ap-

proach bridges the gap between abstract topological descriptors and their

underlying data, significantly enhancing both the interpretability and the

fidelity of scalar-field reconstruction, and opening new avenues for effec-

tive data analysis, visualization, and interpretation in various scientific

domains.

5.2 Limitations

The methods developed in this thesis inherit certain intrinsic limitations

related to their numerical and neural nature. The topological simplifica-

tion solver presented in the first part is limited by numerical precision,

meaning it cannot completely remove persistence pairs but only minimize

their persistence down to a minimal numerical threshold (typically around

10−6 in single precision). This issue can leave residual pairs that must sub-

sequently be addressed through combinatorial post-processing methods,

which themselves may not always guarantee complete simplification due

to the inherent NP-hardness of the underlying problems. Additionally, the

solver generates solutions corresponding to local minima of the simplifi-

80 Chapter 5. Conclusion

cation energy, with no guarantee of achieving globally optimal simplifica-

tions.

The neural-based interpolation method presented in the second part

also carries its own inherent limitations. Most notably, it requires sig-

nificant computational resources for training, typically spanning several

hours. This computational overhead becomes increasingly pronounced

for datasets exhibiting greater geometric and temporal complexity, as

larger neural models are required, leading to increased training times and

greater storage needs. Furthermore, the current neural approach is re-

stricted to data defined on regular grids, limiting its direct applicability to

more general representations such as tetrahedral meshes, unless alterna-

tive generative architectures are explored.

Overall, while both methods have demonstrated substantial practical

value, addressing these numerical precision issues, computational scala-

bility, and data representation constraints constitutes critical directions for

future research.

5.3 Perspectives

The outcomes of this thesis open several promising directions for future

research. Regarding the topological simplification optimization approach,

a relevant next step would be to investigate extensions to other persistence

optimization problems and explore further acceleration strategies tailored

specifically for these problems. Another interesting direction involves de-

veloping parallelization strategies based on divide-and-conquer methods

to enhance scalability and performance on larger datasets.

Concerning the neural topology-aware interpolation method, an im-

portant future direction is to generalize the proposed approach beyond

regular grids, such as scalar fields defined on tetrahedral meshes.

Additionally, extending the method to multidimensional settings (in-

volving parameters beyond just time) could significantly enhance interac-

tive exploration and analysis capabilities for large ensembles of topologi-

cal data. Fig. 5.1 presents preliminary results in this direction. This figure

considers a synthetic 2D dataset (resolution 512× 512) consisting of three

evolving Gaussians: one fixed in the bottom right corner, one moving ver-

tically and growing with increasing y, and another moving horizontally

and growing with increasing x. For this experiment, we used 9 keyframes

(highlighted in green) as inputs, with the interpolated results correspond-

ing to points highlighted in red. Specifically, our interpolation scheme

5.3. Perspectives 81

Figure 5.1 – Comparison between classical bilinear interpolation and our multidimen-

sional neural topology-aware interpolation on a synthetic dataset of three evolving Gaus-

sians. The experiment used 9 keyframes (framed in green) as inputs, with the interpo-

lated results shown in red. The top row presents bilinear interpolation (left), ground

truth (center), and our neural method (right). The bottom row shows detailed results

at (x = 0.75, y = 0.75) along with corresponding persistence diagrams. Bilinear in-

terpolation incorrectly introduces a fourth Gaussian-like structure with low persistence,

whereas our approach preserves the correct number of features and achieves higher PSNR

and lower Wasserstein (W2) distances.

was extended to account for two input parameters instead of time (e.g.,

the above parameters x and y of the Gaussian mixture, using 6000 epochs

in the first phase and 300 epochs in the topology correction phase).

This preliminary result shows that our multidimensional model suc-

cessfully reconstructs the correct topological structures across the domain.

In particular, when observing the interpolated data at (x = 0.75, y = 0.75),

standard bilinear interpolation introduces an additional fourth Gaussian,

a typical artifact of linear interpolation. In contrast, our method accurately

maintains the expected three Gaussian structures and yields persistence

diagrams closely matching the ground truth. Quantitatively, our model

achieves a PSNR of 25.0 compared to 21.41 for bilinear interpolation, and

a significantly reduced Wasserstein distance of 0.01 versus 0.41. When

averaged over all interpolated data points, our method still clearly outper-

forms bilinear interpolation, with a mean PSNR of 29.81 versus 27.82 and

a mean W2 distance of 0.01 compared to 0.16. Motivated by these promis-

ing results on synthetic data, a future direction consists in evaluating our

method on real-life datasets (e.g., the Isabel hurricane dataset), moving

from controlled 2D scenarios to real-world 3D data to further assess scal-

ability and topological fidelity.

82 Chapter 5. Conclusion

One notable application of our multidimensional interpolation would

be in conjunction with existing statistical frameworks for processing topo-

logical representations [SDT23, PVT23, PT24]. Such frameworks enable

dimensionality reductions of an ensemble of topological descriptors (e.g.,

in the plane, for visualization purposes), hence providing intrinsic param-

eters for our multidimensional model. Our approach could nicely com-

plement this pipeline by generating the underlying scalar fields over the

(x, y) domain, constrained to align with the target persistence diagrams

furnished by the statistical framework under consideration. Thus, our

neural model could serve as a scalar reconstruction module within their

topological analysis workflow, enabling full end-to-end multidimensional

interpolation that respects both geometric and topological constraints.

Finally, addressing the computational cost and reducing neural model

sizes while maintaining topological accuracy remains a meaningful chal-

lenge to enhance the practical applicability of these methods in real-world

scenarios.

Bibliography

[AAB+
15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-

low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software

available from tensorflow.org. (Cited page 38.)

[AAPW18] Keri Anderson, Jeffrey Anderson, Sourabh Palande, and Bei

Wang. Topological data analysis of functional MRI connec-

tivity in time and space domains. In MICCAI Workshop on

Connectomics in NeuroImaging, 2018. (Cited pages 3 and 26.)

[AAY06] Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-efficient

batched union-find and its applications to terrain analysis. In

Symposium on Computational Geometry, 2006. (Cited pages 27

and 28.)

[ABD+
13] Dominique Attali, Ulrich Bauer, Olivier Devillers, Marc

Glisse, and André Lieutier. Homological reconstruction and

simplification in R3. In Symposium on Computational Geometry,

2013. (Cited pages 27, 28, 31, 44, 45, and 49.)

[ABG+
15] Utkarsh Ayachit, Andrew C. Bauer, Berk Geveci, Patrick

O’Leary, Kenneth Moreland, Nathan Fabian, and Jeffrey

Mauldin. ParaView Catalyst: Enabling In Situ Data Analy-

sis and Visualization. In ISAV, 2015. (Cited pages 1, 56, 58,

and 73.)

85

86 Bibliography

[AGLM09] D. Attali, M. Glisse, F. Lazarus, and D. Morozov. Persistence-

Sensitive Simplification of Functions on Surfaces in Linear

Time. In TopoInVis, 2009. (Cited pages 27 and 28.)

[ASS+21] Yifei An, Han-Wei Shen, Guihua Shan, Guan Li, and Jun

Liu. Stsrnet: Deep joint space–time super-resolution for vec-

tor field visualization. IEEE computer graphics and applications,

41(6):122–132, 2021. (Cited page 60.)

[BAA+
16] Andrew C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci,

S. Klasky, K. Moreland, Patrick O’Leary, V. Vishwanath,

B. Whitlock, and E W. Bethel. In-situ methods, infrastructures,

and applications on high performance computing platforms.

Computer Graphics Forum, 2016. (Cited pages 1, 56, 58, and 73.)

[Ban67] T. F. Banchoff. Critical points and curvature for embed-

ded polyhedral surfaces. The American Mathematical Monthly,

45(1):245–256, 1967. (Cited pages 3, 26, and 64.)

[Bar94] S. Barannikov. Framed Morse complexes and its invariants.

Adv. Soviet Math., 1994. (Cited page 13.)

[BC91] Dimitri P. Bertsekas and David Castañon. Parallel syn-

chronous and asynchronous implementations of the auction

algorithm. Parallel Computing, 1991. (Cited pages 33 and 38.)

[BDSS18] Alexander Bock, Harish Doraiswamy, Adam Summers, and

Cláudio T. Silva. TopoAngler: Interactive Topology-Based Ex-

traction of Fishes. IEEE TVCG, 24(1):812–821, 2018. (Cited

pages 3 and 26.)

[BEHP04] Peer-Timo Bremer, Herbert Edelsbrunner, Bernd Hamann,

and Valerio Pascucci. A topological hierarchy for functions

on triangulated surfaces. IEEE TVCG, 2004. (Cited page 28.)

[BGL+
18] Harsh Bhatia, Attila G. Gyulassy, Vincenzo Lordi, John E.

Pask, Valerio Pascucci, and Peer-Timo Bremer. Topoms:

Comprehensive topological exploration for molecular and

condensed-matter systems. J. of Computational Chemistry,

39(16):936–952, 2018. (Cited pages 3, 26, and 57.)

[BGSF08] S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb

graphs for shape analysis and applications. Theoretical Com-

puter Science, 392(1-3):5–22, 2008. (Cited pages 3, 26, and 58.)

Bibliography 87

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

(Cited page 19.)

[BKR14] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Dis-

tributed computation of persistent homology. In Algorithm

Engin. and Exp., 2014. (Cited pages 3, 26, 33, and 58.)

[BKRW17] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert

Wagner. Phat - persistent homology algorithms toolbox. J.

Symb. Comput., 2017. https://bitbucket.org/phat-code/phat/

src/master/. (Cited page 33.)

[BLM+
19] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiy-

ong Gao, and Ming-Hsuan Yang. Depth-aware video frame

interpolation. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 3703–3712, 2019.

(Cited page 59.)

[BLW12] Ulrich Bauer, Carsten Lange, and Max Wardetzky. Optimal

Topological Simplification of Discrete Functions on Surfaces.

Discrete Computational Geometry, 2012. (Cited pages 27 and 28.)

[BMBF+
19] Talha Bin Masood, Joseph Budin, Martin Falk, Guillaume

Favelier, Christoph Garth, Charles Gueunet, Pierre Guil-

lou, Lutz Hofmann, Petar Hristov, Adhitya Kamakshidasan,

Christopher Kappe, Pavol Klacansky, Patrick Laurin, Joshua

Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime Soler, Pe-

ter Steneteg, Julien Tierny, Will Usher, Jules Vidal, and Michal

Wozniak. An Overview of the Topology ToolKit. In TopoInVis,

2019. (Cited pages 26, 37, and 66.)

[BNP+
21] Nick Brown, Rupert Nash, Piero Poletti, Giorgio Guzzetta,

Mattia Manica, Agnese Zardini, Markus Flatken, Jules Vi-

dal, Charles Gueunet, Evgenij Belikov, Julien Tierny, Artur

Podobas, Wei Der Chien, Stefano Markidis, and Andreas

Gerndt. Utilising urgent computing to tackle the spread

of mosquito-borne diseases. In IEEE/ACM UrgentHPC@SC,

2021. (Cited pages 1, 56, 58, 66, and 73.)

[BRLP19] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. TTHRESH:

Tensor compression for multidimensional visual data. IEEE

TVCG, 2019. (Cited pages 1 and 56.)

https://bitbucket.org/phat-code/phat/src/master/
https://bitbucket.org/phat-code/phat/src/master/

88 Bibliography

[BWT+
11] P.T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and

J. Bell. Interactive exploration and analysis of large scale

simulations using topology-based data segmentation. IEEE

TVCG, 17(9):1307–1324, 2011. (Cited pages 1, 3, 26, 56, 57, 58,

66, and 73.)

[Car04] Hamish Carr. Topological Manipulation of Isosurfaces. PhD the-

sis, University of British Columbia, 2004. (Cited page 27.)

[CCG+
21] Mathieu Carrière, Frédéric Chazal, Marc Glisse, Yuichi Ike,

Hariprasad Kannan, and Yuhei Umeda. Optimizing per-

sistent homology based functions. In ICML, 2021. (Cited

pages 17, 18, 27, 29, 31, 32, 38, 58, and 65.)

[CCL+
22] Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit

Goel, Zhangyang Wang, Humphrey Shi, and Xiaolong Wang.

Videoinr: Learning video implicit neural representation for

continuous space-time super-resolution. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 2047–2057, 2022. (Cited pages 59 and 60.)

[CCO17] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced

wasserstein kernel for persistence diagrams. In ICML, 2017.

(Cited page 33.)

[CEM06] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Mo-

rozov. Vines and vineyards by updating persistence in linear

time. In Symposium on Computational Geometry, 2006. (Cited

page 35.)

[CHW+
21] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,

and Abhinav Shrivastava. Nerv: Neural representations for

videos. Advances in Neural Information Processing Systems,

34:21557–21568, 2021. (Cited pages 59 and 61.)

[CJL+
18] Erin W. Chambers, Tao Ju, David Letscher, Mao Li, Christo-

pher N. Topp, and Yajie Yan. Some heuristics for the ho-

mological simplification problem. In Stephane Durocher and

Shahin Kamali, editors, CCCG, pages 353–359, 2018. (Cited

page 47.)

[CKH+
20] Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and

Kyoung Mu Lee. Channel attention is all you need for video

Bibliography 89

frame interpolation. In Proceedings of the AAAI conference on ar-

tificial intelligence, volume 34, pages 10663–10671, 2020. (Cited

page 59.)

[CSA00] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees

in all dimensions. In Symp. on Dis. Alg., 2000. (Cited pages 3,

26, and 58.)

[CSvdP04] Hamish A. Carr, Jack Snoeyink, and Michiel van de Panne.

Simplifying Flexible Isosurfaces Using Local Geometric Mea-

sures. In IEEE VIS, 2004. (Cited pages 26 and 30.)

[CWSA16] Hamish Carr, Gunther Weber, Christopher Sewell, and James

Ahrens. Parallel peak pruning for scalable SMP contour tree

computation. In IEEE LDAV, 2016. (Cited pages 3 and 26.)

[DDKL20] Damek Davis, Dmitriy Drusvyatskiy, Sham M. Kakade, and

Jason D. Lee. Stochastic Subgradient Method Converges on

Tame Functions. Found. Comput. Math., 2020. (Cited pages 18,

29, and 65.)

[DFI+15] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser,

Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt,

Daniel Cremers, and Thomas Brox. Flownet: Learning op-

tical flow with convolutional networks. In Proceedings of the

IEEE international conference on computer vision, pages 2758–

2766, 2015. (Cited page 59.)

[DOD23] Jiong Dong, Kaoru Ota, and Mianxiong Dong. Video frame

interpolation: A comprehensive survey. ACM Transactions

on Multimedia Computing, Communications and Applications,

19(2s):1–31, 2023. (Cited page 59.)

[EH09] H. Edelsbrunner and J. Harer. Computational Topology: An

Introduction. American Mathematical Society, 2009. (Cited

pages 1, 3, 13, 14, 26, 56, and 57.)

[ELZ02] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian.

Topological Persistence and Simplification. Discrete Computa-

tional Geometry, 28(4):511–533, 2002. (Cited pages 3, 13, 26, 30,

35, and 58.)

90 Bibliography

[EM90] Herbert Edelsbrunner and Ernst P Mucke. Simulation of sim-

plicity: a technique to cope with degenerate cases in geo-

metric algorithms. ACM Transactions on Graphics, 9(1):66–104,

1990. (Cited page 13.)

[EMP06] Herbert Edelsbrunner, Dmitriy Morozov, and Valerio Pas-

cucci. Persistence-sensitive simplification functions on 2-

manifolds. In Symposium on Computational Geometry, 2006.

(Cited pages 27 and 28.)

[FL99] P. Frosini and C. Landi. Size theory as a topological tool for

computer vision. Pattern Recognition and Image Analysis, 1999.

(Cited page 13.)

[For98] Robin Forman. A User’s Guide to Discrete Morse Theory.

AM, 1998. (Cited pages 28, 35, 43, and 44.)

[FPF+
23] Markus Flatken, Artur Podobas, Riccardo Fellegara, Achim

Basermann, Johannes Holke, David Knapp, Max Kontak,

Christian Krullikowski, Michael Nolde, Nick Brown, Rupert

Nash, Gordon Gibb, Evgenij Belikov, Steven W D Chien,

Stefano Markidis, Pierre Guillou, Julien Tierny, Jules Vidal,

Charles Gueunet, Johannes Günther, Miroslaw Pawlowski,

Piero Poletti, Giorgio Guzzetta, Mattia Manica, Agnese Zar-

dini, Jean-Pierre Chaboureau, Miguel Mendes, Adrián Cardil,

Santiago Monedero, Joaquin Ramirez, and Andreas Gerndt.

VESTEC: Visual Exploration and Sampling Toolkit for Ex-

treme Computing. IEEE Access, 2023. (Cited pages 1, 56, 58,

66, and 73.)

[GAG+
17] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,

and Yann N. Dauphin. Convolutional sequence to sequence

learning. In ICML, 2017. (Cited page 62.)

[GBA+
20] Yuyu Guo, Lei Bi, Euijoon Ahn, Dagan Feng, Qian Wang,

and Jinman Kim. A spatiotemporal volumetric interpolation

network for 4d dynamic medical image. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 4726–4735, 2020. (Cited page 60.)

[GBG+
14] A. Gyulassy, P.T. Bremer, R. Grout, H. Kolla, J. Chen, and

V. Pascucci. Stability of dissipation elements: A case study

Bibliography 91

in combustion. Computer Graphics Forum, 33(3):51–60, 2014.

(Cited pages 3, 26, and 57.)

[GBHP08] A. Gyulassy, P. T. Bremer, B. Hamann, and V. Pascucci.

A practical approach to Morse-Smale complex computation:

Scalability and generality. IEEE TVCG, 2008. (Cited pages 3,

26, and 58.)

[GBHP09] Attila Gyulassy, Peer-Timo Bremer, Bernd Hamann, and Vale-

rio Pascucci. Practical considerations in morse-smale complex

computation. In TopoInVis. Springer, 2009. (Cited pages 27

and 49.)

[GBP19] Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci.

Shared-Memory Parallel Computation of Morse-Smale Com-

plexes with Improved Accuracy. IEEE TVCG, 25(1):1183–1192,

2019. (Cited pages 3, 26, and 58.)

[GCW23] Pengfei Gu, Danny Z Chen, and Chaoli Wang. Nervi: Com-

pressive neural representation of visualization images for

communicating volume visualization results. Computers &

Graphics, 116:216–227, 2023. (Cited page 60.)

[GDN+
07] Attila Gyulassy, Mark A. Duchaineau, Vijay Natarajan, Va-

lerio Pascucci, Eduardo Bringa, Andrew Higginbotham, and

Bernd Hamann. Topologically Clean Distance Fields. IEEE

TVCG, 13(6):1432–1439, 2007. (Cited page 44.)

[GFJT17] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Aug-

mented Merge Trees with Fibonacci Heaps,. In IEEE LDAV,

2017. (Cited pages 3 and 26.)

[GFJT19a] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien

Tierny. Task-Based Augmented Contour Trees with Fibonacci

Heaps. IEEE TPDS, 30(8):1889–1905, 2019. (Cited pages 3, 26,

and 58.)

[GFJT19b] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien

Tierny. Task-based Augmented Reeb Graphs with Dynamic

ST-Trees. In EGPGV, 2019. (Cited pages 3, 26, and 58.)

[GGSG20] Rickard Brüel Gabrielsson, Vignesh Ganapathi-Subramanian,

Primoz Skraba, and Leonidas J. Guibas. Topology-Aware Sur-

92 Bibliography

face Reconstruction for Point Clouds. Computer Graphics Fo-

rum, 2020. (Cited pages 29 and 58.)

[Gir15] Ross B. Girshick. Fast R-CNN. In ICCV, 2015. (Cited page 64.)

[GJR+
14] David Günther, Alec Jacobson, Jan Reininghaus, Hans-Peter

Seidel, Olga Sorkine-Hornung, and Tino Weinkauf. Fast

and Memory-Efficienty Topological Denoising of 2D and 3D

Scalar Fields. IEEE TVCG, 2014. (Cited page 28.)

[GKL+
16] A. Gyulassy, A. Knoll, K.C. Lau, B. Wang, P.T. Bremer,

M.E. Papka, L. A. Curtiss, and V. Pascucci. Interstitial and

Interlayer Ion Diffusion Geometry Extraction in Graphitic

Nanosphere Battery Materials. IEEE TVCG, 22(1):916–925,

2016. (Cited pages 3 and 26.)

[GND+
07] Attila Gyulassy, Vijay Natarajan, Mark Duchaineau, Valerio

Pascucci, Eduardo Bringa, Andrew Higginbotham, and Bernd

Hamann. Topologically Clean Distance Fields. IEEE TVCG,

2007. (Cited page 57.)

[GNP+
05] Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo

Bremer, and Bernd Hamann. Topology-based simplification

for feature extraction from 3d scalar fields. In VIS, pages 535–

542. IEEE, 2005. (Cited page 44.)

[GRF24] Hamid Gadirov, Jos BTM Roerdink, and Steffen Frey. Flint:

Learning-based flow estimation and temporal interpola-

tion for scientific ensemble visualization. arXiv preprint

arXiv:2409.19178, 2024. (Cited page 60.)

[GRSW13] David Günther, Jan Reininghaus, Hans-Peter Seidel, and Tino

Weinkauf. Notes on the simplification of the morse-smale

complex. In TopoInVis. Springer, 2013. (Cited pages 27, 44,

and 49.)

[GVT23] Pierre Guillou, Jules Vidal, and Julien Tierny. Discrete Morse

Sandwich: Fast Computation of Persistence Diagrams for

Scalar Data – An Algorithm and A Benchmark. IEEE TVCG,

2023. (Cited pages 3, 13, 14, 25, 26, 33, 35, 36, 38, 43, 48, 49,

58, and 64.)

Bibliography 93

[Gyu08] Attila Gyulassy. Combinatorial construction of Morse-Smale com-

plexes for data analysis and visualization. PhD thesis, UC Davis,

2008. (Cited pages 26 and 27.)

[GZ07] Yotam I. Gingold and Denis Zorin. Controlled-topology fil-

tering. Comput. Aided Des., 2007. (Cited page 28.)

[H. 42] H. Freudenthal. Simplizialzerlegungen von beschrankter

Flachheit. Annals of Mathematics, 43:580–582, 1942. (Cited

page 13.)

[HBMK22] Ping Hu, Saeed Boorboor, Joseph Marino, and Arie E. Kauf-

man. Geometry-aware planar embedding of treelike struc-

tures. IEEE TVCG, 2022. (Cited pages 43 and 44.)

[HLH+
16] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Flori-

ani, G. Scheuermann, H. Hagen, and C. Garth. A survey of

topology-based methods in visualization. Computer Graphics

Forum, 35(3):643–667, 2016. (Cited pages 1, 3, 26, 56, and 57.)

[H.W60] H.W. Kuhn. Some combinatorial lemmas in topology. IBM

Journal of Research and Development, 45:518–524, 1960. (Cited

page 13.)

[HW19] Jun Han and Chaoli Wang. Tsr-tvd: Temporal super-

resolution for time-varying data analysis and visualiza-

tion. IEEE transactions on visualization and computer graphics,

26(1):205–215, 2019. (Cited page 60.)

[HW22] Jun Han and Chaoli Wang. Coordnet: Data generation

and visualization generation for time-varying volumes via a

coordinate-based neural network. IEEE Transactions on Visual-

ization and Computer Graphics, 29(12):4951–4963, 2022. (Cited

page 60.)

[HZB23] Jun Han, Hao Zheng, and Chongke Bi. Kd-inr: Time-varying

volumetric data compression via knowledge distillation-

based implicit neural representation. IEEE Transactions on

Visualization and Computer Graphics, 30(10):6826–6838, 2023.

(Cited page 60.)

[HZCW21] Jun Han, Hao Zheng, Danny Z Chen, and Chaoli Wang.

Stnet: An end-to-end generative framework for synthesizing

94 Bibliography

spatiotemporal super-resolution volumes. IEEE Transactions

on Visualization and Computer Graphics, 28(1):270–280, 2021.

(Cited page 60.)

[HZH+
22] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and

Shuchang Zhou. Real-time intermediate flow estimation for

video frame interpolation. In European Conference on Computer

Vision, pages 624–642. Springer, 2022. (Cited pages 59 and 60.)

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE CVPR,

2016. (Cited pages 20, 61, and 63.)

[IFF15] Federico Iuricich, Ulderico Fugacci, and Leila De Floriani.

Topologically-consistent simplification of discrete morse com-

plex. Comput. Graph., 51:157–166, 2015. (Cited page 44.)

[IMS+17] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolution

of optical flow estimation with deep networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

pages 2462–2470, 2017. (Cited page 59.)

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal covari-

ate shift. In Proceedings of the 32nd International Conference on

Machine Learning (ICML), pages 448–456. PMLR, 2015. (Cited

page 19.)

[Iur21] Federico Iuricich. Persistence cycles for visual exploration of

persistent homology. IEEE TVCG, 2021. https://github.com/

IuricichF/PersistenceCycles. (Cited pages 25, 43, 48, and 49.)

[IZZE17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros.

Image-to-image translation with conditional adversarial net-

works. In IEEE CVPR, 2017. (Cited page 63.)

[JBY24] Chenyue Jiao, Chongke Bi, and Lu Yang. Ffeinr: flow feature-

enhanced implicit neural representation for spatiotemporal

super-resolution. Journal of Visualization, 27(2):273–289, 2024.

(Cited page 60.)

[JSJ+18] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan

Yang, Erik Learned-Miller, and Jan Kautz. Super slomo: High

https://github.com/IuricichF/PersistenceCycles
https://github.com/IuricichF/PersistenceCycles

Bibliography 95

quality estimation of multiple intermediate frames for video

interpolation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 9000–9008, 2018. (Cited

page 59.)

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. (Cited pages 18, 29,

32, 33, 38, 42, 62, and 66.)

[Kla20] Pavol Klacansky. Open Scientific Visualization Data Sets.

https://klacansky.com/open-scivis-datasets/, 2020. (Cited

page 38.)

[KMN17] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Ge-

ometry helps to compare persistence diagrams. ACM J. of

Experimental Algorithmics, 22, 2017. (Cited pages 33 and 38.)

[KPCT23] Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and

Du Tran. Flavr: Flow-agnostic video representations for fast

frame interpolation. In Proceedings of the IEEE/CVF winter con-

ference on applications of computer vision, pages 2071–2082, 2023.

(Cited page 59.)

[KPLT24] Mohamed Kissi, Mathieu Pont, Joshua Aaron Levine, and

Julien Tierny. A Practical Solver for Scalar Data Topologi-

cal Simplification. IEEE TVCG, 2024. (Cited pages 24, 58, 72,

and 73.)

[KRHH11] J. Kasten, J. Reininghaus, I. Hotz, and H.C. Hege. Two-

dimensional time-dependent vortex regions based on the ac-

celeration magnitude. IEEE TVCG, 17(12):2080–2087, 2011.

(Cited pages 3, 26, and 57.)

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. Nature, 521(7553):436–444, 2015. (Cited page 18.)

[LCO18] Théo Lacombe, Marco Cuturi, and Steve Oudot. Large Scale

computation of Means and Clusters for Persistence Diagrams

using Optimal Transport. In NIPS, 2018. (Cited pages 2, 56,

58, and 74.)

[LGMT20] Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, and

Julien Tierny. Localized topological simplification of scalar

data. IEEE TVCG, 2020. (Cited pages 27 and 28.)

https://klacansky.com/open-scivis-datasets/

96 Bibliography

[LGW24] Yunfei Lu, Pengfei Gu, and Chaoli Wang. Fcnr: Fast com-

pressive neural representation of visualization images. In

2024 IEEE Visualization and Visual Analytics (VIS), pages 31–

35. IEEE, 2024. (Cited page 60.)

[Lin14] P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays.

IEEE TVCG, 2014. (Cited pages 1 and 56.)

[LJLB21] Yuzhe Lu, Kairong Jiang, Joshua A Levine, and Matthew

Berger. Compressive neural representations of volumetric

scalar fields. In Computer Graphics Forum, volume 40, pages

135–146. Wiley Online Library, 2021. (Cited page 60.)

[LK81] Bruce D Lucas and Takeo Kanade. An iterative image regis-

tration technique with an application to stereo vision. In IJ-

CAI’81: 7th international joint conference on Artificial intelligence,

volume 2, pages 674–679, 1981. (Cited page 59.)

[LKC+
20] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun

Pak, Yuseok Ban, and Sangyoun Lee. Adacof: Adaptive col-

laboration of flows for video frame interpolation. In Proceed-

ings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 5316–5325, 2020. (Cited page 59.)

[LLW+
25] Yuxiao Li, Xin Liang, Bei Wang, Yongfeng Qiu, Lin Yan, and

Hanqi Guo. Msz: An efficient parallel algorithm for correct-

ing morse-smale segmentations in error-bounded lossy com-

pressors. IEEE TVCG, 2025. (Cited page 58.)

[LN24] Yuan Luo and Bradley J. Nelson. Accelerating iterated persis-

tent homology computations with warm starts. Computational

Geometry, 2024. (Cited page 35.)

[LWW+
24] Jonas Lukasczyk, Michael Will, Florian Wetzels, Gunther H.

Weber, and Christoph Garth. ExTreeM: Scalable Augmented

Merge Tree Computation via Extremum Graphs. IEEE TVCG,

2024. (Cited pages 3, 26, and 58.)

[LXS+20] Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and

Chao Dong. Enhanced quadratic video interpolation. In Com-

puter Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–

28, 2020, Proceedings, Part IV 16, pages 41–56. Springer, 2020.

(Cited page 59.)

Bibliography 97

[MBGY14] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Ma-

riette Yvinec. The gudhi library: Simplicial complexes and

persistent homology. In Mathematical Software, 2014. https:

//github.com/GUDHI/. (Cited page 38.)

[MK16] Joseph Marino and Arie E. Kaufman. Planar visualization of

treelike structures. IEEE TVCG, 2016. (Cited pages 43 and 44.)

[MLT+
23] Robin G. C. Maack, Jonas Lukasczyk, Julien Tierny, Hans Ha-

gen, Ross Maciejewski, and Christoph Garth. Parallel compu-

tation of piecewise linear morse-smale segmentations. IEEE

TVCG, 2023. (Cited pages 3 and 26.)

[Mun57] James Munkres. Algorithms for the assignment and trans-

portation problems. Journal of the Society for Industrial and Ap-

plied Mathematics, 5(1):32–38, 1957. (Cited page 33.)

[MWR+
16] Daniel Maljovec, Bei Wang, Paul Rosen, Andrea Alfonsi,

Giovanni Pastore, Cristian Rabiti, and Valerio Pascucci.

Topology-inspired partition-based sensitivity analysis and vi-

sualization of nuclear simulations. In IEEE PacificViz, 2016.

(Cited pages 3 and 26.)

[MWZ+
15] Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse,

and Alexander Sorkine-Hornung. Phase-based frame inter-

polation for video. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1410–1418, 2015.

(Cited page 59.)

[NGH04] Xinlai Ni, Michael Garland, and John C. Hart. Fair morse

functions for extracting the topological structure of a surface

mesh. ACM Transactions on Graphics, 2004. (Cited page 28.)

[NKSM24] Arnur Nigmetov, Aditi S. Krishnapriyan, Nicole Sander-

son, and Dmitriy Morozov. Topological regularization via

persistence-sensitive optimization. Computational Geometry,

2024. (Cited page 28.)

[NL20] Simon Niklaus and Feng Liu. Softmax splatting for video

frame interpolation. In Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, pages 5437–5446,

2020. (Cited page 59.)

https://github.com/GUDHI/
https://github.com/GUDHI/

98 Bibliography

[NM22] Arnur Nigmetov and Dmitriy Morozov. Topological opti-

mization with big steps. CoRR, abs/2203.16748, 2022. (Cited

pages 27, 29, 38, and 58.)

[NML17] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-

polation via adaptive separable convolution. In Proceedings of

the IEEE international conference on computer vision, pages 261–

270, 2017. (Cited page 59.)

[NVBB+
22] Florent Nauleau, Fabien Vivodtzev, Thibault Bridel-

Bertomeu, Heloise Beaugendre, and Julien Tierny. Topologi-

cal Analysis of Ensembles of Hydrodynamic Turbulent Flows

– An Experimental Study. In IEEE Symposium on Large Data

Analysis and Visualization, 2022. (Cited pages 3, 26, and 57.)

[OGT19] Malgorzata Olejniczak, André Severo Pereira Gomes, and

Julien Tierny. A Topological Data Analysis Perspective on

Non-Covalent Interactions in Relativistic Calculations. In-

ternational Journal of Quantum Chemistry, 120(8):e26133, 2019.

(Cited pages 3 and 26.)

[OT23] Malgorzata Olejniczak and Julien Tierny. Topological Data

Analysis of Vortices in the Magnetically-Induced Current

Density in LiH Molecule. Physical Chemistry Chemical Physics,

2023. (Cited pages 3, 26, and 57.)

[PF09] Giuseppe Patanè and Bianca Falcidieno. Computing smooth

approximations of scalar functions with constraints. Comput.

Graph., 2009. (Cited page 28.)

[PG18] John Patchett and Galen Ross Gisler. The IEEE SciVis Contest.

http://sciviscontest.ieeevis.org/2018/, 2018. (Cited page 67.)

[PGM+
19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-

dreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

Imperative Style, High-Performance Deep Learning Library.

In NeurIPS, 2019. https://pytorch.org/cppdocs/. (Cited

pages 38, 62, and 66.)

http://sciviscontest.ieeevis.org/2018/
https://pytorch.org/cppdocs/

Bibliography 99

[PKLK20] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.

Bmbc: Bilateral motion estimation with bilateral cost volume

for video interpolation. In Computer Vision–ECCV 2020: 16th

European Conference, Glasgow, UK, August 23–28, 2020, Pro-

ceedings, Part XIV 16, pages 109–125. Springer, 2020. (Cited

page 59.)

[PLK21] Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric

bilateral motion estimation for video frame interpolation. In

Proceedings of the IEEE/CVF international conference on computer

vision, pages 14539–14548, 2021. (Cited page 59.)

[PSBM07] V Pascucci, G Scorzelli, P T Bremer, and A Mascarenhas.

Robust on-line computation of Reeb graphs: simplicity and

speed. ACM Transactions on Graphics, 26(3):58, 2007. (Cited

pages 3, 26, 27, and 58.)

[PSO18] Adrien Poulenard, Primoz Skraba, and Maks Ovsjanikov.

Topological function optimization for continuous shape

matching. Computer Graphics Forum, 2018. (Cited pages 29,

33, and 58.)

[PT24] Mathieu Pont and Julien Tierny. Wasserstein Auto-Encoders

of Merge Trees (and Persistence Diagrams). IEEE TVCG, 2024.

(Cited pages 2, 56, 58, 74, and 82.)

[PVDT22] Mathieu Pont, Jules Vidal, Julie Delon, and Julien Tierny.

Wasserstein Distances, Geodesics and Barycenters of Merge

Trees. IEEE TVCG, 28(1):291–301, 2022. https://github.com/

MatPont/WassersteinMergeTreesData. (Cited pages 2, 56, 58,

and 74.)

[PVT23] Mathieu Pont, Jules Vidal, and Julien Tierny. Principal

Geodesic Analysis of Merge Trees (and Persistence Dia-

grams). IEEE TVCG, 2023. (Cited pages 2, 56, 58, 74, and 82.)

[RKT+
22] Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun,

Caroline Pantofaru, and Brian Curless. Film: Frame interpo-

lation for large motion. In European Conference on Computer

Vision, pages 250–266. Springer, 2022. (Cited page 59.)

[Rob99] Vanessa Robins. Toward computing homology from finite ap-

proximations. Topology Proceedings, 1999. (Cited page 13.)

https://github.com/MatPont/WassersteinMergeTreesData
https://github.com/MatPont/WassersteinMergeTreesData

100 Bibliography

[RWS11] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard.

Theory and Algorithms for Constructing Discrete Morse

Complexes from Grayscale Digital Images. IEEE Trans. Pat-

tern Anal. Mach. Intell., 33(8):1646–1658, 2011. (Cited pages 3,

14, 26, 35, 36, and 58.)

[SDT23] Keanu Sisouk, Julie Delon, and Julien Tierny. Wasserstein

Dictionaries of Persistence Diagrams. CoRR, 2023. (Cited

page 82.)

[SN12] Nithin Shivashankar and Vijay Natarajan. Parallel Computa-

tion of 3D Morse-Smale Complexes. Computer Graphics Forum,

31(3):965–974, 2012. (Cited pages 3, 26, and 58.)

[Soi04] Pierre Soille. Optimal Removal of Spurious Pits in Digital Ele-

vation Models. Water Resources Research, 2004. (Cited pages 27

and 28.)

[Sou11] T. Sousbie. The Persistent Cosmic Web and its Filamentary

Structure: Theory and Implementations. Royal Astronomical

Society, 414:384–403, 2011. (Cited pages 3, 26, 45, 46, and 57.)

[SPCT18] Maxime Soler, Mélanie Plainchault, Bruno Conche, and Julien

Tierny. Topologically controlled lossy compression. In IEEE

PacificViz, 2018. (Cited page 58.)

[SPD+
19] Maxime Soler, Martin Petitfrere, Gilles Darche, Melanie Plain-

chault, Bruno Conche, and Julien Tierny. Ranking Vis-

cous Finger Simulations to an Acquired Ground Truth with

Topology-Aware Matchings. In IEEE LDAV, 2019. (Cited

pages 3, 26, and 57.)

[SPN+
16] Nithin Shivashankar, Pratyush Pranav, Vijay Natarajan, Rien

van de Weygaert, EG Patrick Bos, and Steven Rieder. Felix:

A topology based framework for visual exploration of cosmic

filaments. IEEE TVCG, 22(6):1745–1759, 2016. (Cited pages 3,

26, 45, 46, and 57.)

[SWB21] Elchanan Solomon, Alexander Wagner, and Paul Bendich. A

fast and robust method for global topological functional opti-

mization. In AISTATS, 2021. (Cited pages 27, 29, and 58.)

[SYLK18] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Pwc-net: Cnns for optical flow using pyramid, warping, and

Bibliography 101

cost volume. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 8934–8943, 2018. (Cited

page 59.)

[TD20] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field

transforms for optical flow. In Computer Vision–ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part II 16, pages 402–419. Springer, 2020. (Cited

page 59.)

[TFL+
17] Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles

Gueunet, and Michael Michaux. The Topology ToolKit. IEEE

TVCG, 24(1):832–842, 2017. https://topology-tool-kit.github.

io/. (Cited pages 24, 26, 37, and 66.)

[TMMH14] Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John

Harer. Fréchet Means for Distributions of Persistence Di-

agrams. Discrete Computational Geometry, 52(1):44–70, 2014.

(Cited pages 2, 56, 58, and 74.)

[TP12] Julien Tierny and Valerio Pascucci. Generalized topological

simplification of scalar fields on surfaces. IEEE TVCG, 2012.

(Cited pages 27 and 28.)

[TTK20] TTK Contributors. TTK Data.

https://github.com/topology-tool-kit/ttk-data/tree/dev,

2020. (Cited pages 38, 49, and 67.)

[TTK22] TTK Contributors. TTK Online Example Database.

https://topology-tool-kit.github.io/examples/, 2022. (Cited

page 26.)

[TW24] Kaiyuan Tang and Chaoli Wang. Stsr-inr: Spatiotempo-

ral super-resolution for multivariate time-varying volumetric

data via implicit neural representation. Computers & Graphics,

119:103874, 2024. (Cited pages 60, 68, 70, 71, and 72.)

[UVL16] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016. (Cited pages 19

and 63.)

https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/
https://github.com/topology-tool-kit/ttk-data/tree/dev
https://topology-tool-kit.github.io/examples/

102 Bibliography

[VBT20] Jules Vidal, Joseph Budin, and Julien Tierny. Progres-

sive Wasserstein Barycenters of Persistence Diagrams. IEEE

TVCG, 26(1):151–161, 2020. (Cited pages 2, 33, 56, 58, and 74.)

[VSP+
17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017.

(Cited page 62.)

[WBCM23] Qi Wu, David Bauer, Yuyang Chen, and Kwan-Liu Ma. Hy-

perinr: A fast and predictive hypernetwork for implicit neu-

ral representations via knowledge distillation. arXiv preprint

arXiv:2304.04188, 2023. (Cited page 60.)

[WBKS04] Wei Wang, Cindy Bruyere, Bill Kuo, and Tim Scheitlin. The

IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2004/,

2004. (Cited page 67.)

[WGS10] Tino Weinkauf, Yotam I. Gingold, and Olga Sorkine.

Topology-based Smoothing of 2D Scalar Fields with C1-

Continuity. Computer Graphics Forum, 2010. (Cited page 28.)

[WLC+
21] Zejin Wang, Jing Liu, Xi Chen, Guoqing Li, and Hua Han.

Sparse self-attention aggregation networks for neural se-

quence slice interpolation. BioData Mining, 14:1–19, 2021.

(Cited page 60.)

[WWY+
20] Zhaotao Wu, Jia Wei, Wenguang Yuan, Jiabing Wang, and

Tolga Tasdizen. Inter-slice image augmentation based on

frame interpolation for boosting medical image segmentation

accuracy. In ECAI 2020, pages 1954–1961. IOS Press, 2020.

(Cited page 60.)

[WZZ+
13] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob

Fergus. Regularization of neural networks using dropconnect.

In ICML, 2013. (Cited page 65.)

[YLW+
21] Xiao-lei Yin, Dong-xue Liang, Lu Wang, Jing Qiu, Zhi-yun

Yang, Jian-zeng Dong, and Zhao-yuan Ma. Analysis of coro-

nary angiography video interpolation methods to reduce x-

ray exposure frequency based on deep learning. Cardiovascu-

lar Innovations and Applications, 6(1):17, 2021. (Cited page 60.)

http://sciviscontest.ieeevis.org/2004/

Bibliography 103

[YWM+
19] Lin Yan, Yusu Wang, Elizabeth Munch, Ellen Gasparovic, and

Bei Wang. A structural average of labeled merge trees for

uncertainty visualization. IEEE TVCG, 26(1):832–842, 2019.

(Cited pages 2, 56, 58, and 74.)

[ZCLJ20] Dan Zeng, Erin W. Chambers, David Letscher, and Tao Ju.

To cut or to fill: a global optimization approach to topologi-

cal simplification. ACM Transactions on Graphics, 39(6):201:1–

201:18, 2020. (Cited page 47.)

[ZCLJ22] Dan Zeng, Erin W. Chambers, David Letscher, and Tao Ju.

Topological simplification of nested shapes. Computer Graph-

ics Forum, 41(5):161–173, 2022. (Cited page 47.)

[Zom10] Afra J. Zomorodian. Topology for computing. In Mikhail J.

Atallah and Marina Blanton, editors, Algorithms and Theory of

Computation Handbook (Second Edition), chapter 3, pages 82–

112. CRC Press, 2010. (Cited pages 3 and 26.)

Persistence optimization for data visualization

This thesis addresses the challenge of managing the growing complexity of scalar data

in both space and time, by leveraging topological methods for data reduction and recon-

struction. As datasets become increasingly large and detailed, topological descriptors

such as persistence diagrams offer compact and robust summaries that support efficient

storage and analysis. However, these abstract representations often lack the necessary

information for detailed visualization or interpretation, highlighting the need for meth-

ods capable of reconstructing scalar data from them. To this end, the thesis introduces

two complementary contributions. First, it proposes an optimization framework for

topological simplification that preserves meaningful features while removing noise, ex-

tending prior approaches by handling complex structures such as saddle pairs in three-

dimensional data. Second, it presents a neural interpolation scheme that reconstructs

intermediate scalar fields from sparse keyframes, guided by topological constraints.

By incorporating topology-aware loss functions, the model improves both geometric

and topological accuracy, enabling the faithful reconstruction of time-varying scalar

data. These contributions are validated on synthetic and real-world datasets, including

applications in medical imaging and meteorology, and are supported by open-source

implementations to ensure reproducibility. Together, they provide practical tools for

simplifying and reconstructing complex scalar data through a topological lens.

Optimisation de la persistance pour la visualisation de données

Cette thèse aborde le défi de la gestion de la complexité croissante des champs scalaires

dans l’espace et le temps, en s’appuyant sur des méthodes topologiques pour la réduc-

tion et la reconstruction des données. À mesure que les jeux de données deviennent plus

volumineux et plus détaillés, les descripteurs topologiques, tels que les diagrammes

de persistance, offrent des résumés compacts et robustes qui facilitent le stockage et

l’analyse. Toutefois, ces représentations abstraites ne contiennent souvent pas suffisam-

ment d’informations pour permettre une visualisation ou une interprétation détaillée,

ce qui met en évidence la nécessité de méthodes capables de reconstruire les données

scalaires à partir de ces descripteurs. Pour répondre à ce besoin, la thèse propose deux

contributions complémentaires. Premièrement, elle introduit un cadre d’optimisation

pour la simplification topologique, permettant de préserver les structures significatives

tout en éliminant le bruit, et qui étend les approches existantes en prenant en charge

des structures complexes comme les paires selles dans des données tridimensionnelles.

Deuxièmement, elle présente un schéma d’interpolation neuronal permettant de recon-

struire des champs scalaires intermédiaires à partir de keyframes espacés, en s’appuyant

sur des contraintes topologiques. En intégrant des fonctions de perte sensibles à la

topologie, le modèle améliore à la fois la fidélité géométrique et topologique des re-

constructions, permettant une interpolation fidèle de données scalaires évoluant dans le

temps. Ces contributions sont validées sur des jeux de données synthétiques et réels, in-

cluant des applications en imagerie médicale et en météorologie, et sont accompagnées

d’implémentations open-source assurant la reproductibilité. Ensemble, elles fournissent

des outils pratiques pour la simplification et la reconstruction de données scalaires com-

plexes à travers une approche guidée par la topologie.

	Contents
	Introduction
	General Context and Motivations
	Data analysis and visualization
	Thesis Environment - The TORI Project
	The Topology ToolKit (TTK)

	Problem Formulation
	Contributions
	Outline

	Theoretical Background
	Input data
	Persistence Diagrams
	Wasserstein distance between persistence diagrams
	Persistence optimization
	Neural Networks
	Convolutional Neural Networks (CNNs)
	Normalization Techniques
	Residual Blocks (ResBlocks)
	Upsampling Operations
	Activation Functions
	Integration within the Proposed Architecture

	A practical solver for scalar data topological simplification
	Our Contributions in one Image
	Context
	Related work
	Contributions

	Approach
	Algorithm
	Direct gradient descent
	Fast persistence update
	Fast assignment update

	Results
	Quantitative performance
	Analyzing topologically simplified data
	Repairing genus defects in surface processing
	Limitations

	Summary

	Topology Aware Neural Interpolation of Scalar Fields
	Our Contributions in one Image
	Context
	Related work
	Contributions

	Approach
	Overview
	Architecture
	Losses
	Computational details

	Results
	Test datasets
	Reference approaches
	Quantitative criteria
	Loss influences
	Comparisons
	Limitations

	Summary

	Conclusion
	Summary of Contributions
	Limitations
	Perspectives

	Bibliography

