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Chapter 1

Introduction

Data, in its simplest form, is a collection of values (a collection of datum) that can
become information about a specific phenomenon through interpretation by an exter-
nal medium (observer). Data form the foundation of modern scientific inquiry. They
represent measured observations, experimental results, and simulations collected across
disciplines—from climate and medical science to particle physics and artificial intelli-
gence. With advances in sensors, computing, and digital communication, the scale and
complexity of data have increased, leading to what is often called the big data era.

This thesis’ goal is developing tools that ease the analysis and visualization of data
through the lens of Topological Data Analysis (TDA), powered by the theory of Optimal
Transport (OT). TDA offers a robust mathematical framework for capturing the under-
lying shape of data in a way that is easy to interpret. By leveraging tools from algebraic
topology, such as persistent homology, TDA can aid in data analysis by revealing global
patterns and features that are resistant to noise and invariant under continuous trans-
formations. As such TDA provides mathematical objects called topological abstractions,
which extract those patterns and features of interest in a concise manner, hence facilitat-
ing their analysis. Moreover, modern results from OT can be applied in combination to
topological abstraction to further enhance their descriptive power.

1.1 Context & Motivations

1.1.1 Data acquisition, Analysis and Visualization

As stated before, the scale and complexity of data have increased significantly, leading
to what is often referred to as the data boom. This explosion in data generation has
transformed scientific research, enabling more accurate models, deeper insights, and in-
terdisciplinary discoveries. However, it also presents significant challenges. The analysis
bottleneck arises as the volume, dimensionality, and geometry complexity increase, mak-
ing it difficult to extract meaningful patterns efficiently.

Despite these challenges, this evolution in data generation has changed the way we
make informed decisions based on information interpreted through large-scale data anal-
ysis. In that context, analysis methods from machine learning and data science in general
have been either developed or further improved. Indeed, methods such as k-means or
support vector machines, which classify large populations into groups and reveal trends
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Chapter 1. Introduction

in data, are widely used in modern applications across various fields, such as healthcare.
One way of analyzing data is through simple and interpretable visualization of the data

being studied. Indeed, visualization is a first and natural interaction with data, helping to
uncover explicit patterns and salient features. Thus, in response to the growing complexity
of data, developing more advanced visualization tools has become a necessity. Creating
more dynamic, interactive, interpretable, and—importantly—simple visualizations leads
to a deeper understanding of complex data during analysis. Visualization is not only a
tool for analyzing data; it is also a tool for conveying information interpreted from data.

1.1.2 Topological Data Representations

The geometrical complexity of modern data makes interactive exploration and analysis
difficult, which challenges the interpretation of the data by the users. This motivates the
creation of expressive data abstractions, capable of encapsulating the main features of
interest of the data into simple representations, visually conveying the main information
to the user.

TDA [58] is a family of techniques which precisely addresses this issue. It provides
concise topological descriptors of the main structural features hidden in a dataset. The
relevance of TDA for analyzing scalar data, its efficiency and robustness have been doc-
umented in a number of visualization tasks [88]. Examples of successful applications
include turbulent combustion [34, 78, 105], material sciences [63, 80, 81, 176], nuclear en-
ergy [117], fluid dynamics [96, 126], bioimaging [9, 24, 40], chemistry [20, 72, 131, 132] or
astrophysics [171,177].

Among the different topological descriptors studied in TDA (such as the merge and
contour trees [2,38,39,73,115,183], the Reeb graph [22,57,74,139,140,185], or the Morse-
Smale complex [33, 50, 59, 60, 71, 79, 161, 170]), the Persistence Diagram (Fig. 2.9) is a
particularly prominent example. As described in Sec. 2.3, it is a concise topological
descriptor which captures the main structural features in a dataset and assesses their
individual importance.

1.1.3 Tools from Optimal Transport

Optimal allocation of resources is one of the most primal problem in our every day life.
This problematic falls into the theory of optimal transport. Being initially presents in
important field such as economics [168], it has gained a new wind for its application in
different fields in mathematics. OT is especially acclaimed for its geometric relevance
in comparing probability distributions. Having gathered a lot of theoretical work [164,
192], it has also proved to be relevant in numerous applied domains in the last fifteen
years, such as image comparison [158], image registration [67], domain adaptation [47],
generative modeling [12, 76, 163], inverse problems in imaging [90] or topological data
analysis [58, 148], to name just a few.

1.1.4 The ERC-TORI Project

The big data era has brought datasets that are more complex and on a larger scale,
making their analysis increasingly difficult and leading to a computational bottleneck. At
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1.2. Problem formulation

the same time, the demand for storage space is growing rapidly, requiring advanced data
structures and raising concerns about sustainability, cost, and long-term accessibility.
Addressing these issues is essential to ensure that data continues to advance scientific
progress rather than hinder it. To address these challenges, the TORI 1 Project (In-
Situ Topological Reduction of Scientific 3D Data) focuses on reducing the computational
bottleneck by using topological abstractions of raw data. These topological abstractions
have significantly smaller memory footprints compared to the original data. There are two
principal axes of research: scaling topological methods to larger datasets, and developing
analysis methods based on the data’s topological abstraction.

This thesis focuses on the latter. Its goal is to adapt tools from OT theory to analyze a
specific type of topological descriptor: the persistence diagram. More specifically, it aims
to find a concise and meaningful topological representation of an ensemble of datasets
that offers good computation time and robustness.

1.1.5 The Topology ToolKit

The Topology ToolKit (or TTK) 2 [184] is an open source C++ library for topological
data analysis and visualization. Its goal is developing and providing efficient topological
methods applied to data analysis. It is fully integrated into ParaView [6], a popular open-
source software for data analysis and 3D visualization, developed by Kitware around the
Visualization ToolKit (VTK) library. As a ParaView plugin, TTK is very accessible to end
users working in topological data analysis, enabling them to use the methods developed in
TTK without needing to dive into the C++ code −while having a visualization of the end
result at the same time. Users can even use TTK’s features in Python. All the research
work that is presented in this thesis has been implemented in TTK. Thus it is accessible
to the general public.

1.2 Problem formulation

Until now, we have given some general context about topological data analysis along with
the project in which this thesis takes place. Recall that in most cases, end users need to
analyze not just a single dataset, but many. As a result, a large amount of physical space
must be allocated to store these ensembles of datasets. To address this challenge, the goal
of the TORI project is to analyze such ensembles of datasets through the lens of their
topological abstractions, persistence diagrams, in our case, as mentioned earlier. From
there, many questions arise regarding how to find effective representations of ensembles of
persistence diagrams and how to analyze them. We now further formulate the problematic
this thesis and project addresses.

1https://erc-tori.github.io/
2https://topology-tool-kit.github.io/
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Chapter 1. Introduction

1.2.1 Variability analysis and encoding of ensemble of persistence

diagrams

The development of tools for describing an average of an ensemble of topological abstrac-
tions—enabling the adaptation of machine learning methods such as k-means—has led to
the analysis of variability within such ensembles.

Initially, efforts to find alternative representations aimed to combine topological ab-
stractions with standard machine learning methods. However, these approaches generally
vectorize topological abstractions [4, 10, 37, 112, 160], allowing them to be used as input
for classic machine learning frameworks. While effective to some extent, this strategy has
several downsides: it can introduce approximation errors, and operations on the result-
ing vectors often lack meaningful interpretation with respect to the original topological
descriptors.

Later, other works took a different path, avoiding the need to find such representations
[150]. This thesis follows that approach, first focusing on providing a method for ensembles
of persistence diagrams that is easy to understand and apply.

1.2.2 Accelerating and fortifying methods for topological data

analysis

Some tools used in topological data analysis have computational complexities that can
grow rapidly with the scale of the initial topological abstractions. A simple example is the
so-called Wasserstein distance from OT theory, which has a cubic time complexity with
respect to the size of its inputs. This rate can hinder the interactive aspect of data analysis.
Additionally, several methods for analyzing ensembles of topological abstractions can be
sensitive to outliers, potentially leading to deviations from expected results. This thesis
also focuses on proposing alternatives from OT theory that can accelerate and strengthen
existing methods for persistence diagrams

1.3 Contributions

This thesis addresses the previously mentioned challenges through the following contri-
butions: developing a method for encoding an ensemble of persistence diagrams, and
exploring ways to strengthen and improve this method.

1.3.1 Encoding of ensembles of persistence diagrams

Our initial focus was on developing a simple method for encoding ensembles of persis-
tence diagrams. To achieve this, we drew inspiration from previous work on optimal trans-
port [167], adapting a non-linear dictionary encoding based on the Wasserstein barycenter
of histograms to the context of persistence diagrams. The output of this method is a set
of representatives of the original ensemble, allowing users to inspect the main features of
interest across the entire dataset. The goal is to ensure that the analysis of the represen-
tatives yields the same insights as the analysis of the full ensemble. This contribution is
detailed in Chapt. 3.
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1.3.2 Robust representative of persistence diagrams

A barycenter of point clouds is a generalization of the average—or more formally, the
mean—of real numbers. As such, it naturally shares the same drawback: sensitivity to
outliers. For example, if you compute the mean of a set of numbers and then add a
number that is significantly larger than the rest, the new mean will shift. In light of this
issue, work on generalized Wasserstein barycenters has emerged [181]. We demonstrate
that this type of barycenter can be applied to ensembles of persistence diagrams. This
contribution is detailed in Chapt. 4.

1.3.3 Accelerating tools for analyzing an ensemble of persistence

diagrams

The main tool—the Wasserstein distance—for comparing persistence diagrams has a
significant drawback: its computation time increases rapidly with the size of the dia-
grams [142]. This issue becomes more pronounced as the size of the persistence diagrams
grows with the scale of the original data. One way to address this bottleneck is through
Sliced Optimal Transport (Sliced OT) theory, particularly its main variant of the Wasser-
stein distance: the Sliced Wasserstein distance. In an effort to further accelerate the
computation of the Sliced Wasserstein distance for persistence diagram comparison, we
transformed this work into a practical user’s guide for Sliced OT. This contribution is
detailed in Chapt. 5.

1.4 Outline

This manuscript is structured the following way:

• We begin by introducing some general reminders for Optimal Transport and Topo-
logical Data Analysis in Chapt. 2.

• In Chapt. 3, we present our method for dictionary encoding of persistence diagrams
based on the Wasserstein distance and barycenter.

• In Chapt. 4, we illustrate the utilization of a more robust Wasserstein barycenter
for persistence diagrams.

• In Chapt. 5, we present a user’s guide for sampling strategies for Sliced OT in the
general case.

• Finally, Chapt. 6 gives the end of this thesis by presenting an overview of its differ-
ent contributions and limitations, and discussing about further generalization and
improvement of this Wasserstein dictionary method.

1.5 List of Publications and Submissions

The contributions that we described led to the following publications and submission:
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• Keanu Sisouk, Julie Delon and Julien Tierny. Wasserstein Dictionaries of Per-
sistence Diagrams. In IEEE Transaction on Visualization and Computer Graphics
(IEEE TVCG), volume 30, 2024. Presented at IEEE VIS 2024.

• Keanu Sisouk, Julie Delon and Julien Tierny. A User’s Guide to Sampling Strate-
gies for Sliced Optimal Transport. In Transaction on Machine Learning Research
(TMLR), 2025.

• Keanu Sisouk, Eloi Tanguy, Julie Delon and Julien Tierny. Robust Barycenters
of Persistence Diagrams. Submitted to IEEE TVCG as a short paper.

Other publications during this thesis:

• Mohamed Kissi, Keanu Sisouk, Joshua Levine and Julien Tierny. Topology Aware
Neural Interpolation of Scalar Fields. In TopoInVIS, 2025.
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Chapter 2

Preliminaries

2.1 General prerequisites

This section introduces the elementary prerequisites to understand the different notions
detailed in Sec. 2.2, Sec. 2.3 and in the rest of this thesis.

2.1.1 Quotient Groups, Topology & Geometry, Homotopy

2.1.1.1 Quotient Groups

Definition 2.1 : We call a group any pair (G,L) with G a set and L :

{

G×G→ G

(x, y) 7→ xLy
an application called an intern law, such that:

• L is associative: (xLy)Lz = xL(yLz), ∀x, y, z ∈ G,

• L admits a neutral element (or identity element): ∃e ∈ G s.t. ∀x ∈ G, xLe =
eLx = x,

• every element admits an inverse: ∀x ∈ G, ∃!y ∈ G s.t. xLy = yLx = e.

If G is finite we call its cardinal the order of G. For x in G we denote by x−1 its inverse
and we denote by eG its neutral element.

Definition 2.2 : A generating set of a group (G,L) is a subset noted ⟨G⟩ such that for
every x ∈ G there exist a1, . . . , an ∈ ⟨G⟩ such that x = a1L . . .Lan with n ∈ N∗.
We call the rank of G, noted rk(G), the cardinal of its smallest generating set.

Definition 2.3 : A group (G,L) is abelian if for all x, y ∈ G, xLy = yLx.

Example 2.1 : A simple example of group is (Z,+). Its neutral element is 0, the inverse
of an element is its opposite, it does not have an order as |Z| = +∞, rk(Z) = 1 and it is
abelian.

Definition 2.4 : Let (G,L) be a group and H ⊂ G. H is a subgroup of G if:

• H ̸= ∅,

9
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• ∀x, y ∈ H, xLy−1 ∈ H.

Definition 2.5 : Let (G,LG) and (H,LH) be two groups. Let f : (G,LG) → (H,LH),
we say that f is a homomorphism if and only if:

∀x, y ∈ G, f(xLGy) = f(x)LHf(y).

We call an isomorphism any homomorphism that is a bijection, i.e. for any y ∈ H there
is a unique x ∈ G such that f(x) = y. In this case we write G ≃ H.

Definition 2.6 : Let (G,LG) and (H,LH) be two groups, and f : (G,LG) → (H,LH) a
homomorphism. We call kernel of f the subgroup of G defined as:

Ker(f) = f−1({eH}) = {x ∈ G | f(x) = eH}.

We call image of f the subgroup of H defined as:

Im(f) = f(G) = {f(x) | x ∈ G} = {y ∈ H |∃x ∈ G, f(x) = y}.

Definition 2.7 : A subgroup H of G is called a normal subgroup if:

∀x ∈ H, ∀y ∈ G, yLGxLGy−1 ∈ H.

Proposition 2.1 : If a group (G,LG) is abelian, then every subgroup is normal.

Definition 2.8 : An equivalence relation on a set X, is a relation R between elements
of X verifying those following conditions for every x, y, z ∈ X:

• reflexivity: xRx,

• symmetry: if xRy, then yRx,

• transitivity: if xRy and yRz, then xRz.

We usually denote by ∼ an equivalence relation. For x in X, we call the set of elements
equivalent to x an equivalence class, and x is called its representative.

Definition 2.9 : Let (G,L) be a group and H a subgroup of G. For x ∈ G we denote
the (left) coset associated to H as: xH = {xLy | y ∈ H}.

Proposition 2.2 : The cosets of G are equivalence classes for the relation equivalence
x ∼ y ⇐⇒ y ∈ xH ⇐⇒ y = xLz for z ∈ H.

Remark 2.1 : Intuitively, this relation x ∼ y can be seen as "y is colinear to x".

Proposition 2.3 : For H a subgroup of G, the cosets of H form a partition of G, i.e.
∀x ∈ G, xH ̸= ∅, ⋃z∈G zH = G, and two cosets xH and yH are either disjoint or equal.

Definition 2.10 : For X, Y two subsets of a group G we define the intern product as
XY = {xLy | x ∈ X, y ∈ Y }.

Definition 2.11 : For H a subgroup of G, we denote the set of cosets by G/H =
{gH | g ∈ G} and we call it quotient set of G by H.

10
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Intuitively, a quotient set G/H is a set of equivalence classes where we identify each
element of G to an equivalence class. Meaning that all elements in this equivalent class
are identified by the same element, its representative, which they are "colinear" to.

Theorem 2.1 : Let G be a group and H a normal subgroup of G. Then the intern
product defines an intern law between cosets of H such that G/H is a group. For an
element x ∈ G, we denote its equivalent class (or coset) [x] in G/H.

Remark 2.2 : Notice that we have [eG] = H as y ∼ eG ⇐⇒ y ∈ eGH = {eGLz|z ∈
H} = H.

Example 2.2 : A classic quotient group is Z/2Z, which has two cosets: the even integers
(equal 0 modulo 2) and the odd integers (equal 1 modulo 2). Indeed for n ∈ Z: if n is
even then n = 0 + 2 × k for k ∈ Z, else there is k ∈ Z such that n = 1 + 2 × k. Thus
Z/2Z = {[0], [1]}, or simply {0, 1} (with an abuse of notation) with the addition modulo
2 noted +Z/2Z.

2.1.1.2 Topology and geometry

Definitions 2.1 : Let X be a set, a topology on X is a collection of subsets of X, noted
T (X) such that:

• ∅ ∈ T (X) and X ∈ T (X),

• any union of elements of T (X) is still in T (X) (stable by union),

• any finite intersection of elements of T (X) is still in T (X) (stable by finite inter-
section).

We call X a topological space and an element of T (X) an open set.

Definition 2.12 : A base of open sets of a topological space X, is a collection B of open
such that for any ω ∈ T (X), there is a subset B ⊂ B such that ω = ∪b∈Bb.

A simple example of a topological space is Rd. An open set of Rd inherits its topology
and thus is itself a topological space. If a topological space X is equipped with a metric
(distance) dX then it is called a metric space.

Definition 2.13 : Let (X, dX) and (Y, dY ) be two metric spaces, let f : X → Y be a
function. f is continuous if for all ϵ > 0, for all x ∈ X, there is η > 0 such that for all
y ∈ X, dX(x, y) ≤ η implies dY (f(x), f(y)) ≤ ε.

Definitions 2.2 : Let X, Y be open sets of Rd, we say that f : X → Y is differentiable
on x ∈ X if there is a linear application dfx : Rd → Rd called differential such that
f(x+ h) = f(x) + dfx(h) + o(∥h∥) when h → 0. If f is differentiable on any x ∈ X then
we say that f is differentiable on X. If df is continuous then we say that f is continuously
differentiable. We denote by C1(X, Y ) the set of continuously differentiable functions.

We say that f is 2-differentiable if its differential is differentiable, etc.. We denote by
Ck(X, Y ) the set of continuously k-differentiable functions. We denote by C∞(X, Y ) the
set of smooth (infinitely differentiable) functions.

11
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Definitions 2.3 : A function between two metric spaces is called a homeomorphism if
it is continuous and a bijection and its inverse is continuous. Two topological spaces are
said to be homeomorphic if there exists a homeomorphism between them.

A Ck-diffeomorphism is a function that is differentiable k times, is a bijection such
that its inverse is also differentiable k times.

Homeomorphisms and diffeomorphisms are important because two spaces that are
homeomorphic or diffeomorphic have the same topology.

Example 2.3 : In the real line R, [0, 1] and [0, 0.5[∪]0.5, 1] are not homeomorphic. In
R3, a sphere and a torus (donut) are not homemorphic. However a torus (donut) and a
coffee mug with a handle are homeomorphic.

Definitions 2.4 : A topological space that has a countable base of open sets that is
dense is called a separable space. A topological space that is separable and admits at
least one metric d such that it is complete (i.e. any Cauchy sequence converges) is called
a Polish space.

Definition 2.14 : Let X be a topological space and x ∈ X, a neighbourhood of x is a
subset V ⊂ X such that there exist an open O containing x with O ⊂ V . We denote by
V(x) the set of neighbourhood of x.

Definition 2.15 : A topological space X is said to be separated if for x, y ∈ X, x ̸=
y =⇒ ∃V,W ∈ V(x)× V(y), V ∩W = ∅.

Proposition 2.4 : A topological space endowed with a metric (distance) d is always
separated.

Definition 2.16 : A manifold is a topological space M such that:

• M is separated and has a countable base of open sets,

• any point of M has an open neighbourhood that is homeomorphic to an open set
of Rd.

Definition 2.17 : A (Ck) r-submanifold M of Rd is a toplogical space such that for
any x ∈ M there exist V ∈ V(x) ⊂ Rd with W ∈ V(0) ⊂ Rd and f : V → W a
Ck-diffeomorphism such that f(V ∩M) = W ∩ (Rr × {0}).

Intuitively, a Ck r-submanifold is a topological space that is locally very similar to a
neighbourhood of 0 in Rr.

Example 2.4 : Classic examples of 2-manifolds of R3 are the 2 surfaces and the affine
spaces.

Definition 2.18 : Let (X, dX) be a metric space, let f : X → R be a function. We say
that f is Lipschitz continuous if there is a constant L > 0 such that for all x, y ∈ X,
|f(x)− f(y)| ≤ LdX(x, y).

12
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2.1.1.3 Homotopy

Definition 2.19 : Let X, Y be two topological spaces and f, g ∈ C0(X, Y ). A homotopy
between f and g is a continuous application h : X × [0, 1] → Y such that h(x, 0) = f(x)
and h(x, 1) = g(x) for every x ∈ X.

Basically, a homotopy between two functions is roughly a continuous transformation
of one to the other.

Definition 2.20 : Let X, Y be two topological spaces, we say that they are homotopy
equivalent (or homotopic) if there exist f ∈ C0(X, Y ) and g ∈ C0(Y,X) such that f ◦ g
and g ◦ f are homotopic to the identity applications idX and idY respectively.

2.1.2 Probability Measures

Definition 2.21 : Let E be a set, a σ-algebra A is a non empty set of subset of E that is
stable by complement, countable intersections and countable unions of its elements. We
say that (E,A) is a measurable space.

Example 2.5 : Looking at the definition of a topology, one σ-algebra on R is the collec-
tion of subsets that are formed from its open sets (open intervals, closed intervals, union
of intervals and intersection of intervals), this σ-algrebra is called Borel set.

Definition 2.22 : Let (E,A) and (F,B) be two measurable spaces. We say that a
function f : E → F is measurable if for all B ∈ B, f−1(B) = {a ∈ E | f(a) ∈ B} ∈ A.

Definition 2.23 : Let (E,A) be a measurable space. A (finite) measure on E is an
application µ : A → R+ verifying two conditions:

• µ(∅) = 0,

• for every sequence (An)n∈N ∈ AN of pairwise disjoint sets, µ

(

+∞
⋃

n=0

An

)

=
+∞
∑

n=0

µ(An).

µ is called a probability measure if µ(E) = 1 and (E,A, µ) is a probability space (more
often only denoted (E, µ)). We say that a subset A of E is negligible if µ(A) = 0. We
denote by P(E) the set of probability measures on (E,A).

Example 2.6 : A simple example of a measure is the counting measure µ on a countable
set such as N. µ is such that for A a subset of N, µ(A) = |A|.
Another example of a measure is the so-called Lebesgue measure on R denoted λ: for
a < b we have λ([a, b]) = λ(]a, b[) = λ([a, b[) = λ(]a, b]) = b − a. λ is also generalized on
Rd and is often denoted λ⊗d, for U a d-dimensional open set of Rd, λ⊗d(U) = Vol(U).

Example 2.7 : In Rd, any k-submanifold with k < d is negligible w.r.t the Lebesgue
measure.

Definition 2.24 : Let (Ω, µ) be a probability space. A real valued random variable X
is a measurable function X : E → R. The probability that X has a value that belongs
to a set C ∈ R is µX(C) = µ(X ∈ C) = µ

(

{ω ∈ Ω | X(ω) ∈ C}
)

. The notation X ∼ µX
means that X is a random variable with distribution µX . In practice, when it is not
ambiguous we use the notation P.
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Definition 2.25 : Let X be a real-valued random variable defined on (Ω,P) such that

X is integrable, the expected value of X is defined as E[X] =

∫

Ω

X(x)dP(x).

Proposition 2.5 : Let (Ω,P) be a probability space andX a real-valued random variable.
Let f : R → R a measurable function such that f ◦X is integrable, then :

E[f(X)] =

∫

R

f(x)dPX(x).

Definitions 2.5 : Let X : R → R be a random variable. The cumulative distribution
function of X is defined as FX(x) = P(X ≤ x) for all x ∈ R. The quantile function of X
is defined as the "general inverse" of the cumulative distribution function, that is

Q :[0, 1] → R

p 7→ inf
(

{x ∈ R | p ≤ FX(x)}
)

.

Definition 2.26 : Let X be a random variable on Rd, we say that X admits a density
function with respect to the Lebesgue measure λ if there is a positive function f such that
dPX = fdλ, that is PX(X ∈ A) =

∫

X−1(A)
dPX(x) =

∫

A
f(x)dλ(x).

Proposition 2.6 (Rademacher) : A Lipschitz continuous function f on a d-submanifold
of Rd is differentiable almost everywhere, i.e. it is differentiable everywhere except on
subsets that are negligible w.r.t. the Lebesgue measure. In particular, the Lipschitz
constant is sup ∥∇f(x)∥.

2.2 Optimal Transport

This part lays technical foundations of Optimal Transport (OT) theory to help for a bet-
ter understanding of the several tools used and studied in this thesis. Optimal Transport
theory formalizes the problem of displacing materials from several starting locations to
several destinations. For a simple illustration, consider N storage buildings of rice at
location x1, . . . , xN containing each a certain amount a1, . . . , aN of rice, and L restau-
rants at location y1, . . . , yL demanding certain amounts b1, . . . , bL. Consider the cost of
transportation between two locations xk and yl. Optimal transport theory formally finds
the best way to dispatch the rice from locations xk to destinations yl with minimal cost.
Consequently, OT has become a modern method for formally comparing probability distri-
butions − whether discrete, continuous or represented as histograms − and, importantly,
it defines metrics controlling the topology of the space of probability measures. This part
is based on the following general references: "Optimal Transport for Applied Mathemati-
cians" by F.Santambrogio [164], "Computational Optimal Transport: With applications
to data science" by G.Peyré & M.Cuturi [142] and "Optimal Transport: Old and New"
by C.Villani [192].

2.2.1 Monge’s problem

The first optimal transport problem was formulated by Monge [121] which writes as
follows:
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Problem 2.1 (Monge problem) : Let X ,Y be two Polish spaces, µ ∈ P(X ) and ν ∈ P(Y)
two probability measures, and c : X × Y → [0,+∞] a cost function, solve:

inf
T :X→Y, T#µ=ν

∫

X

c
(

x, T (x)
)

dµ(x), (2.1)

where T#µ : A 7→ µ
(

T−1(A)
)

is called the push forward of µ by T .

However, Monge’s formulation leads to some difficulties. Indeed, Eq. 2.1 is a non convex
optimization problem and its constraint is too rigid, and may result in no feasible solution

[142,164]. To illustrate that, let us take a look into the discrete case where µ =
N
∑

k=1

akδxk

and µ =
L
∑

l=1

blδyl . Monge’s problem rewrites as:

Problem 2.2 : Find a map T : {x0, . . . , xN} → {y1, . . . , yL} such that

∀l, bl =
∑

k:T (xk)=yl

ak.

When L > N , this problem is not feasible as T cannot transport a mass at location xk to
several locations yl.

2.2.2 Kantorovich’s relaxation

Because of those difficulties, a modern and more relaxed formulation introduced by Kan-
torovich [95] is considered:

Problem 2.3 (Kantorovich problem) : For µ ∈ P(X ), ν ∈ P(Y) and c : X × Y →
[0,+∞], solve

inf
γ∈Π(µ,ν)

∫

X×Y
c(x, y)dγ(x, y), (2.2)

where Π(µ, ν) = {γ ∈ P(X × Y) | πX#γ = µ , πY#γ = ν} with πX : (x, y) 7→ x and
πY : (x, y) 7→ y.

Let us interpret the difference with a practical example of the displacement of particles.
Intuitively, Monge’s formulation Eq. 2.1 only allows a one-to-one transportation of a
particle at location x to y, whereas Kantorovich’s one Eq. 2.2 permits the displacement
of many particles located at x to several destinations y.
Formally speaking, γ(x, y) is the amount of mass transported from x to y. This means
that the Kantorovich’s formulation is more permissive as it allows mass from x to be
displaced to several locations. Unlike Eq. 2.1, this optimization problem always admits
a feasible solution as Π(µ, ν) always contains the product measure µ ⊗ ν : X × Y →
R+, X × Y 7→ µ(X)ν(Y ). The minimizers of Eq. 2.2 are called optimal transport plans.

In the discrete case with µ =
N
∑

k=1

akδxk and µ =
L
∑

l=1

blδyl , a coupling γ writes as

γ =
N
∑

k=1

L
∑

l=1

γk,lδxk,yl , (2.3)
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such that
N
∑

k=1

γk,l = bl and
L
∑

l=1

γk,l = ak. We denote by Γ = (γk,l) ∈ Mm,n(R) the coupling

matrix corresponding to a coupling γ and we denote Π(a, b) the set of coupling matrices
between histograms a = (ak)k=1,...,N and b = (bl)l=1,...,L. Denoting C = (Ck,l) a matrix of
cost between the xk and the yl, Kantorovich’s problem rewrites as

inf
Γ∈Π(a,b)

N
∑

k=1

L
∑

l=1

Ck,lγk,l. (2.4)

2.2.2.1 Solving Kantorovich’s problem in practice

Recall that Problem 2.3 is a convex constrained optimization problem, thus it admits a
dual problem that is a concave constrained optimization problem.

Problem 2.4 (Dual Problem) : Let µ ∈ P(X ), ν ∈ P(Y) and a cost function c : X×Y →
[0,+∞[, we solve:

sup
{φ∈Cb(X ), ξ∈Cb(Y) | [φ(x)+ξ(y)]≤c}

∫

X
φdµ+

∫

Y
ξdν. (2.5)

First, one can notice that

sup
{φ∈Cb(X ), ξ∈Cb(Y) | [φ(x)+ξ(y)]≤c}

∫

X
φdµ+

∫

Y
ξdν ≤ inf

γ∈Π(µ,ν)

∫

X×Y
c(x, y)dγ.

In fact those two problems are equivalents:

Proposition 2.7 ( [164]) :

sup
{φ∈Cb(X ), ξ∈Cb(Y) | [φ(x)+ξ(y)]≤c}

∫

X
φdµ+

∫

Y
ξdν = inf

γ∈Π(µ,ν)

∫

X×Y
c(x, y)dγ

But one can even go further. Indeed one can see that given the constraint {φ ∈ Cb(X ), ξ ∈
Cb(Y) | φ(x) + ξ(y)] ≤ c}, if we take a pair φ, ξ, with φ fixed, then taking ξ as the c-
transform of φ improves the solution.

Definition 2.27 : For φ ∈ Cb(X ), we call the c-transform of φ the function

φc(y) :Y → R

y 7→ inf
x∈X

c(x, y)− φ(x).

The same way, for a given ξ, the best φ is the c-transform of ξ.

Definition 2.28 : For ξ ∈ Cb(Y), we call the c-transform of ξ the function

ξc(x) :X → R

x 7→ inf
y∈Y

c(x, y)− ξ(y).
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We call φ a c-concave function on X if there is ξ : Y → R such that φ = ξc, similarly we call
ξ a c-convave function if there is φ : X → R such that ξ = φc. We denote c− concav(X )
the space of c-concave function on X (same for c − concav(Y)). Consequently, one can
replace a pair (φ, ξ) by (φ, φc), giving the following result.

Proposition 2.8 : If X and Y are compact and c is continuous. Then Problem 2.4
admits a solution (φ, ψ) = (φ, φc) with φ c− concav. In other words

sup
{φ∈Cb(X ), ξ∈Cb(Y) | [φ(x)+ξ(y)]≤c}

∫

X
φdµ+

∫

Y
ξdν = sup

φ∈c−concav(X )

∫

X
φdµ+

∫

Y
φcdν.

If we look into the case where µ =
N
∑

k=1

akδxk and ν =
L
∑

l=1

blδyl are both discrete, the dual

problem simply writes as:

Problem 2.5 : Solve

max
{φ∈RN , ξ∈RL | ∀(k,l),φk+ξl≤Ck,l}

⟨φ, a⟩+ ⟨ξ, b⟩.

We can also define a c-transform of a vector φ ∈ RN as:

(φc)l = min
k∈{1,...,N}

Ck,l − φk,

and consequently consider the following optimization problem.

Problem 2.6 : Solve
max
φ∈RN

⟨φ, a⟩+ ⟨φc, b⟩.

2.2.3 Wasserstein distance

The Wasserstein distance is a specific case of Kantorovich’s formulation where X = Y
and c(x, y) = d(x, y)q where d is a distance.

Definition 2.29 : Let (X , d) be a Polish space, let µ, ν ∈ P(X ), c : (x, y) 7→ d(x, y)q

with q ∈ R, the q-Wasserstein distance writes:

Wq(µ, ν) :=

(

inf
γ∈Π(µ,ν)

∫

(Rd)2
d(x, y)qdγ(x, y)

)1/q

. (2.6)

By Villani [192], Wq defines a distance between probability measures of finite q-th moment
on X .
In the following and for the rest of the thesis, unless specified, we will assume X = Rd for
d ≥ 1.

Definition 2.30 : Let µ, ν ∈ P(Rd), c : (x, y) 7→ ∥x − y∥q with q ∈ R and ∥ · − · ∥ the
Euclidean distance, the q-Wasserstein distance writes:

Wq(µ, ν) :=

(

inf
γ∈Π(µ,ν)

∫

(Rd)2
∥x− y∥qdγ(x, y)

)1/q

. (2.7)
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2.2.3.1 Optimal transport on the real line

In the specific case where µ and ν are two probability measures defined on R (or a space
isomorphic to R), then the q-Wasserstein distance is well known and has an explicit
formula.

Proposition 2.9 : For µ ∈ P(R) and ν ∈ P(R), denoting Fµ, Fν their cumulative
distribution function and F−1

µ ,F−1
ν their generalized inverse (or quantiles function), the

q-Wasserstein distance writes

Wq(µ, ν) =

(∫

[0,1]

|F−1
µ (t)− F−1

ν (t)|qdt
)1/q

. (2.8)

This means that the Wasserstein distance between one dimensional probability measures
is obtained by comparing their quantiles in an increasing order.

2.2.3.2 Balanced discrete case

This part provides some insight into the Wasserstein distance when µ and ν are both
discrete. In the following and in this thesis, unless specified, µ and ν have the same
number of points support with uniform weight. We call this setting a balanced optimal
transport problem.

Definition 2.31 : We denote µ =
1

K

K
∑

k=1

δxk , ν =
1

K

K
∑

k=1

δyk with x = {x1, . . . , xK},

y = {y1, . . . , yN} two sets of N ≥ 1 points in Rd. We also denote ix and iy the sets of
indices of x and y respectively. The q-Wasserstein distance writes:

Wq(µ, ν) =



 inf
ψ:ix

bij−→iy

1

K

K
∑

k=1

∥xk − yψ(k)∥q




1/q

. (2.9)

Eq. 2.9 is thus a displacement problem under the constraint of having bijections as optimal
transport plans.

Now recalling that the p-Wasserstein distance admits an explicit formula when dealing
with probability measures on R, this formula (Eq. 2.8) becomes

Wq(µ, ν) =

(

1

K

K
∑

k=1

∥xσ(k) − yτ(k)∥q
)1/q

,

where σ and τ are permutations of {1, . . . , N} respectively ordering the sets {x1, . . . , xK}
and {y1, . . . , yK} on R.

Remark 2.3 : Note that in this last case, the Monge’s problem and its Kantorovich’s
relaxation are equivalent.

2.2.3.3 Probabilistic interpretation

Eq. 2.6 can also be interpreted in a probabilistic way, and is equivalent to the following
formulation:

Wq(µ, ν)
q = min

X∼µ,Y∼ν
E[d(X, Y )q]. (2.10)
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2.2.4 Wasserstein barycenter

This section details a nonlinear interpolation between probability measures on Rd. The
same way one obtains a barycenter between points {x1, . . . , xm} in Rd with barycentric
weights (λ1, . . . , λm) as

argmin
x∈Rd

m
∑

i=1

λi∥x− xi∥2,

one can obtain such barycenter by replacing the Euclidean distance by the 2-Wasserstein
distance and the xi by probability measures µi.

Definition 2.32 (Agueh & Carlier [5]) : Let µ1, . . . , µm be m probability measures on
Rd with finite second moments, let λ1, . . . , λm be positive coefficients summing to 1. A
Wasserstein barycenter µ∗ is then defined as

µ∗ ∈ argmin
µ

m
∑

i=1

λiW
2
2 (µ, µi). (2.11)

2.3 Topological Data Analysis

This part presents the backbone of a modern method for comparing topological manifolds.
The first works on comparison of topological spaces showed that connectivity arguments
can be used. Indeed the image of a connected space by a continuous function is a connected
space, thus two spaces that have different numbers of connected component cannot be
similar (they are not homeomorphics). Further works then took their interests on the
boundary of a manifold, the following observation being the foundation of homology
theory: the boundary of a topological manifold is a manifold with an empty boundary.
This simple observation was followed by the algebraic formalization of a boundary, and
consequently what has an empty boundary which is commonly called a "hole". This
section is based on the following general references: "Elements of Algebraic Topology"
by J.Munkres [124], "Algebraic Topology" by A.Hatcher [86], "Topologie Algébrique: Une
Introduction et Au Delà by C.Lerustre [111] , "Computational Topology: An Introduction"
by H.Edelsbrunner & J.Harer [58], and "Fréchet Means for Distributions of Persistence
Diagrams" by K.Turner & .al [187].

2.3.1 Simplicial Homology

The theory of homology groups formalizes those notion of "holes" in an algebraic way, and
is commonly used to compare topological manifolds. In this thesis we detail one way to
define homology based on simplicial complexes (or triangulations). It is called simplicial
homology and it is the most concrete among the homology theories.

2.3.1.1 Simplicial complex

Definition 2.33 (Simplex) : For P = {p0, p1, . . . , pk} ⊂ Rd a set of (k+1) points affinely
independent, i.e. they do not belong on a common affine line, the k-simplex σ with
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vertices P is

σ =

{

k
∑

i=0

λipi | ∀i, λi ≥ 0,
k
∑

i=0

λi = 1

}

. (2.12)

In this setting we denote σ = [p0, p1, . . . , pk] the simplex spanned by P , and k its dimen-
sion.

Remark 2.4 : • A 0-simplex is a point, a 1-simplex is a segment, a 2-simplex is a
filled triangle, and a 3-simplex is a filled tetrahedron.

• The faces of σ are the simplices spanned by the subsets of P .

Definition 2.34 (Simplicial complexes) : A simplicial complex K in Rd is a collection of
simplices s.t.:

• a face of a simplex of K is a simplex of K.

• the intersection of two simplexes of K is either empty or a common face.

We also introduce two definitions that will be useful in the following.

Definition 2.35 : We denote by |K| the underlying space, which is the union of all the
simplices of K with the topology inherited by Rd.

Fig. 2.1 illustrates a simple example of a simplicial complex, and a collection of sim-
plices that is not a simplicial complex.

Definition 2.36 : LetM be a subcollection of K, ifM contains all simplices of K spanned
by its element then it is a subcomplex of K. A particular subcomplex is the k-skeleton,
containing all simplex of K of at most dimension k.

Figure 2.1: On the left we have a simplicial complex, on the right we do not have a
simplicial complex as there is an intersection of simplices that is the union of two simplices
(colored in red), thus is not a face in this example.

2.3.1.2 Homology

Definition 2.37 (Chain complexes) : Let K be a simplicial complex and k an integer.
A k-chain is a finite formal sum of L k-simplices in K. The standard notation for this is

c =
L
∑

i=1

aiσi where σi are k-simplices of K and ai coefficients in Z/2Z.
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2.3. Topological Data Analysis

Remark 2.5 : In topological data analysis, we mostly study the setting where the co-
efficients ai belong to the group Z/2Z. But chain complexes can also be defined using
coefficients belonging to other groups, rings or fields (in general Z).

Definition 2.38 : The sum of two k-chains c =
∑

i

aiσi and c′ =
∑

i

biσi is defined as

follows:
c+ c′ =

∑

i

(ai + bi)σi, with 1 + 1 = 0 in Z/2Z.

This formal sum defines an inner law between k-chains, thus it defines a group structure
(associativity, identity element, inverse element).

Definition 2.39 : For k ∈ N, the k-chains space over a simplicial complex K is the
abelian group spanned by the formal sums of k-simplices. Notation Ck = Ck(K) denotes
such group.

For k < 0 and k > dim(K), this group is trivial Ck = {0}. To relate these groups we
define the boundary of a k-simplex as the sum of its (k − 1) dimensional faces.

Definition 2.40 : Writing σ = [v0, v1, . . . , vk] for the simplex spanned by the listed
vertices, its boundary is:

∂kσ =
k
∑

i=0

[v0, . . . , v̂i, . . . , vk],

where [v0, . . . , v̂i, . . . , vk] is the i-th face of σ by omitting vi.
In Fig. 2.2, we have a simple visualization of a boundary of a 2-simplex.

•
v1

•
v2

•v0
∂2

•
v1

•
v2

•v0

Figure 2.2: The 2-simplex, which is a filled triangle, can be written as σ = [v0, v1, v2]. Its
boundary is ∂2σ = [v0, v1] + [v0, v2] + [v1, v2] which is an empty triangle spanned by the
sum of the three 1-simplices.

This definition of a simplex boundary leads us to define ∂ as a linear operator:

Definition 2.41 : the boundary operator or the boundary homomorphism is defined as

∂k : Ck −→ Ck−1

c 7−→ ∂kc =
∑

σ∈c
∂kσ.

The boundary homomorphism links the k-chains groups the following way:

. . .
∂k+1−−→ Ck(K)

∂k−→ Ck−1(K)
∂k−1−−→ . . .

∂2−→ C1(K)
∂1−→ C0(K)

∂−→ {0}.
This sequence leads us to the definition of the kernel and image of the boundary operator.
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Definition 2.42 (k-cycles and k-boundaries) : A k-cycle is a k-chain with a null
boundary, i.e. the set of k-cycles of K is defined as:

Zk(K) = Zk = Ker(∂k) = {c ∈ Ck | ∂kc = 0}.

We define a k-boundary as a k-chain that is the boundary of a (k + 1)-chain, i.e. the set
of k-boundaries of K is defined as:

Bk(K) = Bk = Im(∂k+1) = {c ∈ Ck | ∃c′ ∈ Ck+1, ∂k+1c
′ = c}.

Those two sets are groups as they are respectively the kernel and the image of a homo-
morphism.

Fig. 2.3 shows a case where a chain is both a cycle and a boundary.
Let us now introduce the fundamental lemma carried by the famous quote:

"The boundary of a boundary is empty."

Lemma 2.1 (Fundamental lemma of Homology) :

∂k−1∂kσ = 0, ∀k ∈ N \ {0}, ∀ σ ∈ Ck.

Proof. As ∂k−1∂k is linear, we just need to show that ∂k−1∂kσ = 0 for a k-simplex σ. Let
σ = [v0, . . . , vk] be a k-simplex, we have:

∂k−1(∂kτ) = ∂k−1

k
∑

i=0

[v0, . . . , v̂i, . . . , vk] =
k
∑

i=0

∂k−1[v0, . . . , v̂i, . . . , vk]

=
k
∑

i=0

∑

i ̸=j
[v0, . . . , v̂j, v̂i, . . . , vk] =

∑

j<i

[v0, . . . , v̂j, v̂i, . . . , vk] +
∑

j>i

[v0, . . . , v̂j, v̂i, . . . , vk].

As the last two sums are the same with different permutations, the sum of the two is
equal to 0.

•
v1

•
v2

•v0
∂2

•
v1

•
v2

•v0
∂1

Figure 2.3: Initially we have σ = [v0, v1, v2]. Then we apply the boundary operator
∂2σ = [v0, v1] + [v0, v2] + [v1, v2], and ∂1∂2σ = [v0] + [v1] + [v0] + [v2] + [v1] + [v2] = 0.

This lemma gives us this direct corollary:

Corollary 2.1 : Bk is a normal subgroup of Zk.
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Bk being a normal subgroup of Zk ensures that taking the quotient of Zk by Bk gives a
group, and this group is the so-called homology group.

Definition 2.43 : The k-th homology group is the k-th cycle group modulo the k-th
boundary group, or the group of cosets of the k-th boundary group:

Hk(K) = Hk = Zk/Bk.

The k-th Betti number [146] is defined as the rank of the k-th homology group: βk =
rk(Hk).

A cycle σ defines an equivalence class [σ] in Hk, and its class is called homology class.
Looking at the definition, a cycle σ is a boundary if and only if [σ] = 0 (Rk. 2.2). Before
giving an interpretation of homology groups and the Betti numbers, let us compute the
1-st homology groups in two examples.

Example 2.8 : We consider the following complex K comprised of the elementary 1-

chains e1, e2, e3, e4, e5. Let us take the following chain σ =
5
∑

i=1

aiei.

e1

e2

e3

e4 e5

•
v0

•
v1

•v2•v3

We have ∂1σ = 0 ⇐⇒ ∂1

4
∑

i=1

aiei = 0 ⇐⇒



















a1 + a2 = 0

a3 + a4 = 0

a1 + a4 + a5 = 0

a2 + a3 + a5 = 0

. This system has 2

degrees of freedom, choosing values for a1 and a3 induces the values of a2, a4, a5. We keep
in mind that the ai take their values in Z/2Z. There are tree cases:

• a1 = 1 and a3 = 0: we have a2 = 1, a4 = 0 and a5 = 1, giving us the chain
e1 + e2 + e5.

• a1 = 0 and a3 = 1: we have a2 = 0, a4 = 1 and a5 = 1, giving us the chain
e3 + e4 + e5.

• a1 = 1 and a3 = 1: we have a2 = 1, a4 = 1 and a5 = 0, giving us the chain
e1 + e2 + e3 + e4.

We also have e1+e2+e3+e4 = e1+e2+e5+e3+e4+e5. This means that Z1 is generated
by the first two chains, and is of rank 2. B1 = {0} as there are no 2-simplices in the
complex, meaning that H1 = Z1/B1 = Z1/{0} ≃ Z1. Thus β1 = 2.
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Example 2.9 : Now we consider the following chains σ =
5
∑

i=1

aiei and τ = [v0, v1, v2].

e1

e2

e3

e4
e5

•
v0

•
v1

•v2•v3

τ

The same way as in the previous example, Z1 is generated by the chains e1 + e2 + e5 and
e3 + e4 + e5. However e1 + e2 + e5 = ∂2τ ∈ B1, meaning that its homology class is [0],
thus H1 = ⟨[e3 + e4 + e5]⟩. So we have β1 = rk(H1) = 1.

Notice that we let H0 on the side. This homology group is easy to compute thanks to
this following result [124]:

Theorem 2.2 : Let K be a complex, H0(K) is generated by taking one vertex from each
connected component of K.

This means that one only has to look at the connected components to find the 0-th
homology classes and β0. Following this theorem, we have the following property:

Proposition 2.10 : Let K = {x} with x in Rd, then Hk(K) = 0 for all k ≥ 1 and
H0(K) = 1.

For terminology, we say that two k-chains c and c′ are homologous if there is a boundary
b ∈ B1 such that c′ = c + b ⇐⇒ c′ ∈ c + B1. Recall the complex in Ex. 2.9, we take
c = e3 + e4 + e5 (the generator of H1) and c′ = e1 + e2 + e3 + e4. Those two chains are
homologous as c′ = e1 + e2 + e3 + e4 + e5 + e5 = e3 + e4 + e5 + e1 + e2 + e5 = c + ∂2τ .
In other words, to obtain a k-homology class [c], one has to add all k-boundaries to its
representative, c+Bk with c a k-cycle.

Informally speaking, the homology groups represents the k-dimension "holes" in a
simplicial complex, more formally called "handles". Thus they are topological descriptors
of a simplicial complex. As such, they are invariant by homotopy and homeomorphism.

Proposition 2.11 : Homology groups are invariant by homotopy and homeomorphism.

Until now we have detailed the theory behind simplicial homology without taking into
account the case for common topological spaces. We introduce a definition linking the
two cases.

Definition 2.44 : Let M be a r-submanifold of Rd, a triangulation of M is a simplicial
complex K such that its underlying space |K| is homeomorphic to M. We say that M is
triangulable it there exists such a triangulation.
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This means that to find the homology groups of a topological space, one can triangulate
such a space with a simplicial complex (if it is triangulable) and compute the homology
groups on it.

Remark 2.6 : We have not detailed the theory of homology groups for general topological
spaces as it would be too much of a detour for this thesis. However the intuition and
definition are the same (the way leading to it is not...), the homology groups represent
the "handles" of a topological space.

2.3.2 Persistent homology

The persistent homology theory is a natural extension of the homology theory. Its goal
is the same, comparing topological spaces in an efficient and quick way. It goes further
than the homology theory. Indeed while homology theory permits one to know about
the homology groups of a topological manifold, i.e. its topological invariants, persistent
homology allows one to "track" the evolution homology groups, during a sweep, of a
manifold based on scalar values or data values.

Intuition: Let M be a surface "oriented vertically". Take a scalar function f : M →
R representing a height function. Now take a value a ∈ R, one can track the evolution of
the topology of M when varying a by studying the preimage of ]−∞, a] by f . Thus one
can track the evolution of the homology groups of f−1(]−∞, a] while sweeping a.

2.3.2.1 Filtration of a simplicial complex

Definition 2.45 : Let M be a r-submanifold (Cp) of Rd. Let f : M → R be a scalar
function. For a ∈ R, we call its preimage f−1(a) = {x ∈ M f(x) = a} a level set. We
also call Ma = f−1(]−∞, a]) = {x ∈ M | f(x) ≤ a} a sublevel set.

In some cases it is required for the function to be C∞, that its critical points are
non-degenerate (its Hessian admits an inverse) and that all critical points have different
critical values. The second condition prevents any plateau around the critical points and
in most cases is the only condition that is not discarded.

However, for obvious reasons, such a function cannot be defined in practice on a
submanifold M. So we go around this diffculty by defining a similar function on a
simplicial complex approximating M.

Definition 2.46 : Let K be a triangulation of M, with vertices in M that have scalar
values specified. A piecewise linear (PL) function f : |K| → R is a function such that

f(x) =
k
∑

i=1

λi(x)f(ui) for x ∈ σ = [u1, . . . , uk] a simplex, λi(x) the barycentric coordinates

as in Eq. 2.12 and f(ui) the values already assigned beforehand.

Now that we have a proper function on a simplicial complex, the goal is to build nested
subcomplexes K0 ⊂ K1 ⊂ . . . ⊂ Kl = K so that the homology groups of each Ki can be
computed, allowing their evolution to be tracked. This type of nested spaces, especially
topological spaces, is called a filtration:

Definition 2.47 : A filtration is an indexed set (Xi)i∈I of subspaces of a topological
space X such that Xi ⊂ Xj if i ≤ j.
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Before defining a filtration of a simplicial complex, we need two simple notions first.

Definition 2.48 : Let v be a vertex of a simplicial complex K. The star of v is the union
of the interiors of the simplices of K that have v as a vertex. It is denoted St(v). Its
closure is denoted St(v) and is called the closed star of v (Fig. 2.4).
We define the lower star, noted LSt(v), as the set of simplices in St(v) such that f(v) is
the maximum:

LSt(v) = {σ ∈ St(v) | u ∈ σ =⇒ f(u) ≤ f(v)}.
Now denote all the vertices of a simplicial complex K (ui)i∈{1,...,l} and order them such

that f(ui) < f(uj) for i ≤ j, taking Ki =
⋃

j≤i LSt(uj) defines a filtration of K and
⋃l
i=1Ki = K. This filtration is called the lower star filtration of K. Moreover, taking

a such that f(ui) ≤ a < f(ui+1), one can see that |K|a = f−1(] − ∞, a]) is homotopy
equivalent to |Ki|, the retractions t 7→ (1− t)y+ tui and t 7→ (1− t)ui+ ty, with f(y) = a,
provides the result. This ensures a continuous tracking of the homology groups by the
sublevel sets.

•
v

◦

◦◦

◦

◦

St(v)

• •

••

•

•

v

St(v)

Figure 2.4: On the left we have the star of a vertex v in a simplicial complex. The dashed
edges are the simplices that are not in St(v). The colored triangles represent the interiors
of the 2-simplices that have v as a vertex. On the right we have the closed star of v.

The inclusions between the |Ki| induce the following natural inclusion applications:

∅ = |K0| ↪→ |K1| ↪→ . . . ↪→ |Kl| = |K|.
Those inclusion applications induce themselves natural homomorphisms between theHk(Ki).

2.3.2.2 Evolution of homology

Proposition 2.12 : Let (Ki)i∈{1,...,l} be a lower star filtration of a simplicial complex K
associated to a PL function f . The inclusion applications between the |Ki| induce the
following homomorphisms denoted f i,jk : Hk(Ki) → Hk(Kj), [σ]i 7→ [σ]j for i ≤ j.

[σ]i denotes the homology class in Ki, and [σ]i can be non-trivial with [σ]j being null.
Thanks to those morphisms, we have the following sequences:

{0} = Hk(K0)
f0,1k−−→ Hk(K1)

f1,2k−−→ . . .
f l−1,l
k−−−→ Hk(Kl) = Hk(K),

for all dimensions k.
Those sequences allow the tracking of the homology classes. This is the foundation

of persistent homology, tracking when a homology class "appears" in the sequence and
when it "disappears" in the sequence.
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Definition 2.49 (Edelsbrunner & al [58]) : The k-th persistent homology groups are
defined as the image of the induced homomorphisms:

H i,j
k = Im(f i,jk ), ∀ 0 ≤ i ≤ j ≤ l.

As for the Betti number, the k-th persistent Betti numbers are defined as the ranks of
these groups βi,jk = rk(H i,j

k ).

For terminology, we say that a homology class [σ]i in Hk(Ki) is born at Ki if [σ]i is
not an image by f i−1,i

k : Hk(Ki−1) → Hk(Ki), i.e. [σ]i /∈ H i−1,i
k . Informally, it means that

[σ]i does not come from a previous subcomplex prior to Ki (included). With the same
reasoning, we say that [σ]i dies at Kj if it has the same image with an older class coming
from Ki−1 when going from Kj−1 to Kj. Formally, [σ]i merges with another class at Kj

if:

• f i,j−1
k ([σ]i) is not an image by f i−1,j−1

k , meaning that it does not come from Ki−1

onward to Kj−1, i.e. f i,j−1
k ([σ]i) /∈ H i−1,j−1

k .

• There is [γ]j that is an image by f i−1,j
k such that f i,jk ([σ]i) = [γ]j = f i−1,j

k ([γ]i−1),
i.e. f i,jk ([σ]i) ∈ H i−1,j

k .

This process is called the Elder Rule, and Fig. 2.5 illustrates the process of a merging of
two classes during a filtration.

Figure 2.5: [γ]i−1 was born at Ki−1 and "lives" through the images of f i−1,i
k , f i−1,j−1

k and
f j−1,j
k (shaded areas). Another class [σ]i is born at Ki then lives through the images
f i−1,j−1
k and f j−1,j

k , until f i,jk ([σ]i) = [γ]j = f i−1,j
k ([γ]i−1).

2.3.2.3 Critical points

Recall that for a ∈ R such that f(ui) ≤ a < f(ui+1), |Ka| has the same homotopy as
|Ki|, and in particular the homology remains the same by Prop. 2.11. This means that
the only moment we can possibly observe the birth or the death of a homology group is
at a ui. Before characterizing such vertices, we need two simple notions.
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Definition 2.50 : Let v be a vertex of a simplicial complex K. Recalling the star of v,
St(v), and its closure St(v), we define the link of v (Fig. 2.6) as:

Lk(v) = St(v)− St(v).

Similarly to the lower star, the lower and upper link of v is defined as:

LLk(v) = {σ ∈ Lk(v) | u ∈ σ =⇒ f(u) < f(v)},
ULk(v) = {σ ∈ Lk(v) | u ∈ σ =⇒ f(u) > f(v)}.

•
v

◦

◦◦

◦

◦

St(v)

• •

••

•

•

v

St(v)

•

••

•

•

Lk(v)

Figure 2.6: On the left we have the star of a vertex v, in the middle its closed star and
on the right its link.

We can now classify the vertices of a triangulation K of a r-submanifold using the
reduced homology of their lower links, see Fig. 2.7 for an illustration.

Definition 2.51 : Let K be a triangulation of a r-submanifold M with a PL function f
on K. Let v be a vertex of K, it is said that:

• v is a PL regular vertex if LLk(v) ̸= ∅ and ULk(v) ̸= ∅ with Hk

(

ULk(v)
)

= 1 and
Hk

(

ULk(v)
)

= 0 for 1 ≤ k ≤ r.

• Otherwise, v is called a PL critical vertex of index q for 0 ≤ q ≤ r:

• If LLk(v) is empty, then v is called a minimum and is a critical vertex of index
0. By convention we identify S−1 = ∅.

• If ULk(v) is empty, then v is called a maximum and is a critical vertex of index
r.

• Otherwise, it is called a saddle and is a critical vertex of index 1 ≤ q ≤ r − 1.

Now that we have a classification of the vertices of a triangulation. We can now say
when the homotopy of the lower star filtration changes.

Proposition 2.13 : Let K be a triangulation of a r-submanifold with simplices (ui)i∈{1,...,l}.
Let f : K → R be a PL function such that f(u1) < . . . < f(ul). Taking the lower star
filtration K0 ⊂ . . . ⊂ Kl = K, a homology class [σ] is either born at Ki or dies at Ki if
and only if ui is a PL critical vertex of K.

The lifetime of a homology class during the filtration is important for topological data
analysis.
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Figure 2.7: We have examples of a lower link of vertex v in a 2-submanifold when it is:
a regular vertex, a minimum, a saddle and a maximum. The simplices are dashdotted if
they are not in either of them. The simplices in blue are in LLk(v), and the yellow ones are
in ULk(v). For the first example, v being a regular vertex means LLk(v) and ULK(v)
are homotopic to a point, thus H0

(

LLk(v)
)

= H0

(

ULk(v)
)

= 1 and Hk

(

LLk(v)
)

=
Hk

(

ULk(v)
)

= 0 for k ∈ {1, 2}. For the second case, v is a minimum if LLk(v) = ∅. v is
a 1-saddle, its lower link and upper link are not empty and not connected. Finally, v is a
maximum as ULk(v) = ∅.

Definition 2.52 : Let K be a triangulation of a r-submanifold M, with vertices (ui)i∈{1,...,l}
along with a PL function on |K|. Consider the lower star filtration K0 ⊂ . . . ⊂ Kl, and
let ui and uj be two critical vertices of f such that a homology class [σ] is born at Ki and
dies at Kj. The lifetime of [σ] is called the persistence and pers([σ]) = f(uj)− f(ui). If
[σ] is born at Ki but never merges with another class, then its persistence is infinite.

There is always at least one class that has infinite persistence, it is the first class born
at the global minimum. Fig. 2.8 provides a simple example of a filtration of a 1D scalar
function. Now we have everything to define the mathematical object studied in this thesis.

2.3.3 Persistence diagrams

We have shown that the lower star filtration allows us to track the evolution of homology
classes of a triangulation K of a r-submanifold M. We have also characterized the birth
and the death of a homology class during the filtration. Following Prop. 2.13, a homology
class can be identified to a pair of critical points

(

f(ui), (uj)
)

. The persistence diagram
is a mathematical object embedding each pair

(

f(ui), (uj)
)

to a point in R2 and the
persistence is still encoded as f(uj)− f(ui).

Definition 2.53 (Persistence Diagram [58]) : The k-th persistence diagram of a filtration
is defined as a set {(x, y) ∈ R2 | x > y} (points counted with multiplicity) with x and
y encoding respectively the birth and death of a homology class of the k-th persistent
homology group, along with the diagonal ∆ = {(x, y) ∈ R2 | x = y} counted with infinite
multiplicity.

A persistence diagram encodes all the information about the persistent homology
groups of a filtration. We know that there is at least one class that has infinite persis-
tence, resulting in theory to have a pair in the persistence diagram of the form (x,+∞).
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Figure 2.8: This figure present a simple filtration on a 1D function on a compact interval
of R. This function has 7 critical points associated to 7 critical values a, b, c, d, e, f and
g. There are seven main events during the filtration. First when ω = a (colored in
yellow) a connected component is born (colored in yellow). Second, when ω = b (green),
a second connected component (green) is born while the yellow one grows. Third, at ω = c
(cyan) a third component (cyan) appears with yellow and green still growing. Fourth, at
ω = d (purple) the last component (purple) comes next, with the other three still growing.
Fifth, when ω reaches e (green), the yellow and green components merge, the green dies
and only the yellow one is still growing according to the elder rule. The lifetime of the
green component being e − b. Second to last, with ω = f (purple), the cyan and purple
components merge, and its lifetime equals f − d with only the cyan one growing. Last,
the last two component merge, letting only the yellow one, and this lifetime is g − c.
Those different ranges of values gives the lifetimes of the 4 connected components, those
lifetimes − called persistence − are represented as the lengths of vertical bar codes encoded
with the same colors of the critical values (and component) on the right. In particular,
this construction on the right is a formal representation of a persistence diagrams in the
"birth/death" space, the bottom part of the bar codes being on the diagonal, the top part
having coordinates (vmin, vmax) and the persistence encoded as vmax − vmin.

However, in practice, we cut this infinite value of those pairs to the global maximum.
This means there is at least on pair involving the global minimum and global maximum,
whose persistence is the global range of the scalar function.

A particular persistence diagrams that is interesting to look at is the 0-th persistence
diagram. Indeed this diagram tracks the evolution of the 0-th homology groups at all time,
and we know that the 0-th homology groups correspond to the connected components of
the lower star filtration. This diagram is composed of pairs (x, y) where x is a minimum
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2.3. Topological Data Analysis

Figure 2.9: Persistence diagrams of a clean (left) and noisy (right) terrain (dark blue
spheres: minima, dark yellow: maxima, other: saddles). The three main hills are clearly
represented with long bars in the persistence diagrams. In the noisy persistence diagram,
small bars encode noise.

point and y a saddle point. Those pairs are interesting because they represent drainage
basins, or a pit, of values in the data. The r-th persistence diagrams is also of interest,
this diagrams is composed of pairs (x, y) with x being a saddle point and y a maximum
point. Indeed, we have seen that the 0-th persistence diagrams is composed of min-saddle
pairs of a PL function f , but if we take −f then a min-saddle pair becomes a saddle-max
pair. So if the min-saddle pairs represent drainage basins, then the saddle-max represent
mountains, or peaks, of values in the data.

Pairs with small persistence are more often associated with noise, while the pairs
with high persistence correspond to the structures of interests as we can see in Fig. 2.9.
However, there are cases where those pairs encode the relevant information of the topology
of the initial data (Fig. 3.12). But mostly, we often remove the pairs with small persistence
in the diagrams to simplify further computations on them.

2.3.3.1 Wasserstein distance between Persistence Diagrams

There are several metric used to formally compare persistence diagrams [44]. The most
commonly used is the Wasserstein distance, which we already introduced in Eq. 2.9. In
practice, a persistence diagram is only represented by its pairs outside the diagonal ∆,
so we can consider it as a discrete probability measure on R2. However, recall that we
introduced the Wasserstein distance when the optimal transport problem is balanced, and
two persistence diagrams can have different numbers of pairs outside of ∆. So we have to
pre-process the two of them to make the transport problem balanced.

For a points v ∈ R2, we denote by π∆(v) its projection onto ∆ with respect to the
norm ∥.∥. For D(f) and D(g) two persistence diagrams (from two PL functions f and
g), we consider the following augmented diagrams:

D′(f) = D(f) ∪ {π∆(v) | v ∈ D(g)},
D′(g) = D(g) ∪ {π∆(v) | v ∈ D(f)}.

We see that |D′(f)| = |D′(g)| = N . Now that we have balanced the transport problem, let
us discuss about the choice of the cost. Indeed, ∆ represents the null persistent homology
class that is always present in the filtration. Thus two points on the diagonal are associated
to the same homology class [0] and are considered as equal. To take that into account we

consider the following cost cq : R
2 ×R2 → R+, (x, y) 7→

{

∥x− y∥q if x ̸∈ ∆ or y /∈ ∆

0 otherwise
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with q > 1. Denoting D′(f) = 1
K

K
∑

k=1

δxk and D′(f) = 1
K

K
∑

k=1

δyk , the Wasserstein distance

(Eq. 2.9) between the diagrams D(f) and D(g), denoted WD
q ,writes as

WD
q

(

D′(f), D′(g)
)

=

(

inf
ψ:D′(f)

bij−→D′(g)

K
∑

k=1

cq
(

xk, ψ(xk)
)

)1/q

,

Where ψ, the optimal transport plan, matches persistence pairs of same critical indices.
In practice, the Wasserstein distance used is the 2-Wasserstein distance WD

2 . Fig. 2.10
illustrates an example of the matching returned by W2 between two persistence diagrams.

Despite those modifications, the usual Wasserstein distance and the Wasserstein dis-
tance for diagrams are equivalent.

Proposition 2.14 : For all D1, D2 persistence diagrams (that have been augmented) and
q ∈ [1,∞[:

WD,q
q (D1, D2) ≤ W q

q (D1, D2) ≤ 2WD,q
q (D1, D2). (2.13)

Proof. Let D1, D2 be two persistence diagrams supposed augmented. We consider ψ the
optimal transport plan with respect to W q

q . With an abuse of notation we will write
x ∈ D1 to designate a point of the persistence diagram D1. We have:

W q
q (D1, D2) =

∑

x∈D1

∥x− ψ(x)∥q

=
∑

x/∈∆ or ψ(x)/∈∆
∥x− ψ(x)∥q +

∑

x∈∆ & ψ(x)∈∆
∥x− ψ(x)∥q.

Then we naturally have:
∑

x∈D1

cq
(

x, ψ(x)
)

≤
∑

x/∈∆ & ψ(x)/∈∆
∥x− ψ(x)∥q +

∑

x∈∆ & ψ(x)∈∆
0

≤
∑

x/∈∆ & ψ(x)/∈∆
∥x− ψ(x)∥q +

∑

x∈∆ & ψ(x)∈∆
∥x− ψ(x)∥q,

with cq(x, y) = ∥x− y∥q if either x or y are not on ∆ and 0 otherwise. Thus by definition
of W p

2D we have:

WD,q
2 (D1, D2) = inf

ϕ:D1→D2

∑

x∈D1

cq
(

x, ϕ(x)
)

≤
∑

x∈D1

cq
(

x, ψ(x)
)

≤ W q
q (D1, D2). (2.14)

For the other inequality, let γ be the optimal transport plan for WD,q
2 (D1, D2). We have:

WD,q
2 (D1, D2) =

∑

x∈D1

cq
(

x, γ(x)
)

=
∑

x/∈∆ or γ(x)/∈∆
∥x− γ(x)∥q +

∑

x∈∆ & γ(x)∈∆
0,

we then take ϕ the modification of γ such that the summation on {x /∈ ∆ or γ(x) /∈ ∆}
does not change, and regarding the sum on ∆ it rearranges the terms the following way:

• considering x /∈ ∆, we denote π∆(x) its projection on ∆ and γ(x) its assigned by γ
not in ∆,
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• we have ϕ
(

π∆(x)
)

= π∆
(

γ(x)
)

.

By definition we have

∑

x/∈∆ or γ(x)/∈∆
∥x− γ(x)∥q +

∑

x∈∆ & γ(x)

0 =
∑

x/∈∆ or ϕ(x)/∈∆
∥x− ϕ(x)∥q +

∑

x∈∆ & ϕ(x)

0.

Now we notice that:

∑

x∈∆ & ϕ(x)∈∆
∥x− ϕ(x)∥q ≤

∑

x∈∆ & ϕ(x)∈∆
∥π−1

∆ (x)− π−1
∆

(

ϕ(x)
)

∥q ≤
∑

x/∈∆ or ϕ(x)/∈∆
∥x− ϕ(x)∥q.

Thus:

∑

x/∈∆ or ϕ(x)/∈∆
∥x− ϕ(x)∥q +

∑

x∈∆ & ϕ(x)∈∆
∥x− ϕ(x)∥q

≤ 2
∑

x/∈∆ or ϕ(x)/∈∆
∥x− ϕ(x)∥q = 2

∑

x/∈∆ or γ(x)/∈∆
∥x− γ(x)∥q.

By definition we finally have:

W q
q (D1, D2) = inf

τ :D1→D2

∑

x∈D1

∥x− τ(x)∥q ≤ 2WD,q
2 (D1, D2).

In light of this result, we will drop the notation WD
q and simply use Wq to denote the

q-Wasserstein distance between persistence diagrams for the remainder of this thesis, as
both distances are equivalent.

Figure 2.10: Optimal matching (green dashes, right) with regard to W between the two
persistence diagrams (center) of two terrains (left).
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2.3.3.2 Stability of the Wasserstein distance

One important property, justifying using the Wasserstein distance between persistence
diagrams of functions, is the stability of the Wasserstein distance [46].

Definition 2.54 : Let M be a compact metric space. We say that M implies bounded
degree-k total persistence if there is a constant CM, depending only on M (and its
dimension), such that for every tame (has finite number of separated critical points)
Lipschitz continuous function f with Lipschitz constant Cf , we have:

Persk(f) =
∑

x∈D(f)

pers(x)k ≤ C l
fCM.

Proposition 2.15 ( [46]) : Let M be a compact metric space that implies bounded
degree-k total persistence. Let f, g be two tame Lipschitz continuous functions. Then we
have for q > k and p ∈ [1,∞[:

WD
q

(

D′(f), D′(g)
)

≤ CM max(Cf , Cg)
k∥f − g∥1−

k
q

∞ .

This result ensures that the persistence diagrams of two functions cannot be farther
to each other than the original functions are; Fig. 2.9 illustrates this stability property.
Regarding the constant CM bounding the total persistence, we have the following expres-
sion in a specific case for the 0-th and r-th persistence diagrams when M is a compact
r-submanifold.

Proposition 2.16 : Let M be a compact smooth r-submanifold in Rd with negative

curvature. Then M implies bounded degree-r total persistence with CM =
Γ( r

2
+1)

πr/2 Vol(M).

Proof. Without any loss of generality, we suppose M to be connected, the proof can be
generalized by reasoning on each component Mi otherwise and sum them. Let f : M → R

be a tame Lipschitz continuous function.
Let us look at a draining basin A with local minimal value b and saddle value d. We

take f−1(b) and f−1(d) the level sets accordingly, we also note that f−1(b) is a singleton
as f is tame.

By Hopfin-Rinow theorem [35], there is a minimizing geodesic α : [0, 1] → M between
f−1(b) and f−1(d). In other words, α is a path such that α(0) = f−1(b), α(1) ∈ f−1(d) and
Length(α) = minx∈f−1(d) dM

(

x, f−1(b)
)

= dmin. f is Lipschitz continuous, thus γ = f ◦ α
is a Lipschitz and rectifiable curve on f(A). We have

Length(γ) = Length(f ◦ α) =
∫ 1

0

lims→t

|f
(

α(s)
)

− f
(

α(t)
)

|
|s− t| dt

≤
∫ 1

0

Cf lims→t

dM
(

α(s), α(t)
)

|s− t| dt = CfLength(α).

The last equality holds because α is a geodesic. As α realizes the geodesic between
f−1(b) and f−1(d), A contains a geodesic r-ball of center f−1(b) and radius dmin, thus

Vol

(

Bk
(

f−1(b), dmin
)

)

≤ Vol(A).
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Introducing the gamma function Γ : R∗
+ → R∗

+, z 7→
∫

R∗

+

tz−1e−tdt, we have:

(d− b)r ≤ Length(γ)r ≤ Cr
fd

r
min ≤ Cr

f

Γ( r
2
+ 1)

πr/2
Vol

(

Br
(

f−1(b), dmin
)

)

≤ Cr
f

Γ( r
2
+ 1)

πr/2
Vol(A) = Cr

f

Γ( r
2
+ 1)

πr/2

∫

A

1dµM(s).

The third inequality comes from the fact that M has a negative curvature. The same
proof can be done for peaks of values, indeed for d a local maximal value and b a local
saddle value for f , then we have b′ = −d being a local minimal value and d′ = −b being
local saddle value for −f .

We sum over all the draining basins and peaks, and we have the following:

∑

x∈D(f)

pers(x)r ≤ Cr
f

Γ( r
2
+ 1)

πr/2

∫

M
1dµM(s) = Cr

f

Γ( r
2
+ 1)

πr/2
Vol(M).

2.3.3.3 Wasserstein barycenter of Persistence Diagrams

The same way a Wasserstein barycenter between probability measures is defined, one
can use W 2

2 to define a barycenter of persistence diagrams [187]. Recalling Def. 2.32,
a barycenter of persistence diagrams D = {a1, . . . , am} with barycentric weights λ =
λ1, . . . , λm is defined as

Y (λ,D) ∈ argmin
D

m
∑

i=1

λiW
2
2 (D, ai). (2.15)

Turner & al [187] introduce a simple and efficient way to estimate this barycenter.
Y (λ,D) is firstly initialized as one element of {a1, . . . , am}. Then m optimal trans-
port plans ψ1, . . . , ψm, between each ai and Y (λ,D), are computed. Next, we update

Y (λ,D) = {p1, . . . , pK} by setting pk =
m
∑

i=1

λiψi(pk) for all 1 ≤ k ≤ K. This sequence

of events is iterated until attaining a fixed diagram Y (λ,D), which also means that the
ψi remain unchanged between two iterations. This algorithm results in a diagram as
in Fig. 2.11. This algorithm is accelerated by Vidal & al [191] by integrating tailored
approximations throughout the computation. Specifically, it approximates the optimal
assignments ψi with the fast Auction optimization [19] (instead of the traditional, yet
prohibitive, Munkres algorithm [123]). Further, it improves performance with a mecha-
nism called price memorization, which enables the initialization of the Auction optimiza-
tion with the assignments ψi computed in the previous Assignment step. This allows the
barycenter optimization to resume the assignment optimization instead of re-computing
it from scratch at each iteration. This approach also includes a strategy for the adaptive
increase of the accuracy parameter of the Auction optimization, allowing for fast assign-
ments in the early iterations of the barycenter algorithm, and slower but more accurate
assignments towards its convergence.
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The computation of the barycenter Y (λ,D) requires generalizing the pairwise aug-
mentation described in Sec. 2.3.3.1. Specifically, each non-diagonal point of each diagram
ai is projected to the diagonal of all the other diagrams aj (with i ̸= j). After this first
augmentation, each diagram ai contains K =

∑m
i=1 |ai| points (where |ai| is the number

of non-diagonal points in ai). Then Y (λ,D) is typically initialized on the diagram a∗
which initially minimizes the Fréchet energy. Let |Y (λ,D)| = |a∗| be the number of non-
diagonal points of a∗. Then, all the non-diagonal points of all the atoms are projected on
the diagonal of Y (λ,D), and reciprocally, all the non-diagonal points of Y (λ,D) are pro-
jected on the diagonal of each atom. Thus, at this stage, after this second augmentation,
each diagram ai and the candidate barycenter Y (λ,D) contains K =

∑m
i=1 |ai|+|Y (λ,D)|

points (mostly on the diagonal).
Fig. 2.11 gives a simple example of a Wasserstein barycenter of persistence diagrams.

Figure 2.11: Wasserstein barycenter (cyan, uniform weights) of 3 persistence diagrams
(center) of 3 terrains (left). Each barycenter point (cyan sphere) is the barycenter of its
matched points in the inputs (cyan triangle).
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Chapter 3

Wasserstein Dictionaries of Persistence

Diagrams

This chapter presents a computational framework for the concise encoding of an en-
semble of persistence diagrams, in the form of weighted Wasserstein barycenters [187,191]
of a dictionary of atom diagrams. We introduce a multi-scale gradient descent approach
for the efficient resolution of the corresponding minimization problem, which interleaves
the optimization of the barycenter weights with the optimization of the atom diagrams.
Our approach leverages the analytic expressions for the gradient of both sub-problems
to ensure fast iterations and it additionally exploits shared-memory parallelism. Exten-
sive experiments on public ensembles demonstrate the efficiency of our approach, with
Wasserstein dictionary computations in the orders of minutes for the largest examples.
We show the utility of our contributions in two applications. First, we apply Wassserstein
dictionaries to data reduction and reliably compress persistence diagrams by concisely rep-
resenting them with their weights in the dictionary. Second, we present a dimensionality
reduction framework based on a Wasserstein dictionary defined with a small number of
atoms (typically three) and encode the dictionary as a low dimensional simplex embedded
in a visual space (typically in 2D). In both applications, quantitative experiments assess
the relevance of our framework. Finally, we provide a C++ implementation that can be
used to reproduce our results.

The work presented in this chapter has been published in the journal IEEE Trans-
actions on Visualization and Computer Graphics 2024 [173]. It is certified replicable by
the Graphics Replicability Stamp Initiative (https://www.replicabilitystamp.org/
index.html#https-github-com-keanu-sisouk-w2-pd-dict). Our implementation is
available at https://github.com/Keanu-Sisouk/W2-PD-Dict.
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Chapter 3. Wasserstein Dictionaries of Persistence Diagrams

3.1 Context

In addition to the challenge of increased geometrical complexity (discussed above), a new
difficulty has recently emerged in many applications, with the notion of ensemble dataset.
These representations describe a given phenomenon not only with a single dataset, but
with a collection of datasets, called ensemble members. In that context, the topological
analysis of an ensemble dataset consequently results in an ensemble of corresponding topo-
logical descriptors (e.g. one persistence diagram per ensemble member). Some prominent
examples of such ensembles, that are analyzed in this chapter are: the Isabel ensemble
[148] which is an ensemble of 3D datasets which are obtained from a simulation of the
Isabel storm and the Ionization Front 3D ensemble [148] which members are describing
the movement of ions in a gaseous environment through simulations.

Then, a major challenge consists in developing practical tools for such an ensemble
of topological descriptors, to facilitate its processing, analysis and visualization. Such
tools include compression approaches (to facilitate the manipulation of the ensemble of
descriptors) or visualization methods (for instance, with planar layouts, where each point
encodes a descriptor and the distance between a pair of points encodes the intrinsic
differences between the corresponding descriptors).

To enable the above tools, a key research question deals with the definition of a concise,
yet informative, encoding of the ensemble of descriptors. A promising research direction
consists in defining a dictionary (i.e. a set of reference descriptors, or atoms), such that
the topological descriptors of the ensemble can be concisely encoded by expressing them
as a specific function of the atoms (e.g. a linear combination). At a technical level, this
requires to accurately capture and model the implicit relations (i.e. the possible functions)
which link the different descriptors of the ensemble.

A series of recent works started the exploration of this overall direction, in particu-
lar with the notion of average topological representation [104, 149, 187, 191, 199]. These
techniques can produce a topological descriptor which nicely summarizes the ensemble.
However, they do not capture the implicit relations between the different topological
descriptors.

This chapter addresses this issue by introducing a simple and efficient approach for the
estimation of linear relations between persistence diagrams on their associated Wasser-
stein metric space. Inspired by previous work on histograms [167], our approach pro-
vides a linear encoding of the input ensemble, where each diagram is represented as a
weighted Wasserstein barycenter [187,191] of a dictionary of automatically optimized di-
agrams called atom diagrams. We introduce a novel multi-scale gradient descent algorithm
(Sec. 3.4) for the efficient resolution of the corresponding minimization problem (Sec. 3.3),
for which we interleave the optimization of the barycenter weights (Sec. 3.3.2) with the
optimization of the atom diagrams (Sec. 3.3.3). Extensive experiments (Sec. 3.6) on public
ensembles demonstrate the efficiency of our approach, with Wasserstein dictionary com-
putations in the orders of minutes for the largest examples. We illustrate the relevance
of our contributions for the visual analysis of ensemble data with two applications, data
reduction (Sec. 3.5.1) and dimensionality reduction (Sec. 3.5.2).
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3.1. Context

3.1.1 Related Work

The literature related to our work can be classified into three main classes: (i) uncertainty
visualization, (ii) ensemble visualization, and (iii) topological methods for ensembles.
(i) Uncertainty visualization: Data variability can be represented in the form of un-
certain datasets, by considering the data at each point of the domain as a random variable,
associated with an explicit probability density function (PDF). The analysis and visual-
ization of uncertain data has been recognized as a major challenge in the visualization
community [1, 27, 92, 116,138,155]. Several techniques have been proposed either dealing
with the entropy of the random variables [154], or their correlation [145] or gradient vari-
ation [143]. The effect of data uncertainty on feature extraction has also been studied
(for instance for level set extraction [14, 15, 144, 151–153, 166]), for various interpolation
schemes and PDF models (e.g. Gaussian [113,134,135,141] or uniform [21,77,179] distri-
butions). In general, a central limitation of existing methods for uncertain data is their
design dependence on a specific PDF model (Gaussian, uniform, etc). This challenges
their usability for ensemble data, where the PDFs estimated from the ensemble can follow
an arbitrary, unknown model. Moreover, most of these techniques do not consider multi-
modal PDFs, which are however essential when multiple trends appear in the ensemble.
(ii) Ensemble visualization: Another approach to model data variability consists in
using ensemble datasets. In this context, the variability is encoded by a sequence of em-
pirical observations (i.e the members of the ensemble). Established techniques typically
compute geometrical objects, such as level sets or streamlines, thereby capturing the main
features for each member of the ensemble. From there, a representative of the resulting
ensemble of geometrical objects can be computed. For this task, a few methods have been
introduced. For instance spaghetti plots [55] are used in the case of level-set variability,
more particularly for weather data [156, 165], and box-plots [120, 194] for the variability
of contours and curves. In the case of trend variability, Hummel et al. [91] conceived
a Lagrangian framework for classification purposes in flow ensembles. More specifically,
clustering techniques have been used to identify the main trends in ensemble of stream-
lines [65] and isocontours [66]. However, only few techniques have applied this strategy
to topological objects. Favelier et al. [62] and Athawale et al. [16] respectively introduced
techniques to analyze the geometrical variability of critical points and gradient separatri-
ces. Overlap-based heuristics have been studied for estimating a representative contour
tree from an ensemble [101, 197]. In the context of ensembles of histograms, Schmitz
et al. [167] introduced a dictionary encoding approach based on optimal transport [48].
However, this method is not directly applicable to persistence diagrams. It focuses on
a fundamentally different object (histograms). Thus, the employed distances, geodesics
and barycenters are defined differently (in particular in an entropic form [48, 49]) and
the algorithms for their computations are drastically different (based on Sinkhorn matrix
scaling [172]). In contrast, our work focuses on Persistence diagrams (Sec. 3.2.1), whose
associated metric space is also inspired from optimal transport, but with various formal
and computational specificities (Sec. 3.2.2). Moreover, our approach is based on gradient
descent which, from our experience, provides better practical convergence for this kind
of problems than quasi-Newton techniques. Finally, we contribute a multi-scale progres-
sive optimization algorithm, which provides improved solutions in comparison to a naive
optimization.
(iii) Topological methods for ensembles: To analyze the relations between the per-
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sistence diagrams of an ensemble, several key low level notions are required, such as
the notion of distance and barycenters between diagrams, for which we review the lit-
erature here. Inspired by optimal transport [95, 121], the Wasserstein distance between
persistence diagrams [58] (Sec. 3.2.2) has been extensively studied [44, 46]. It relies on a
bipartite assignment problem, for which exact [123] and approximate [19,97] implementa-
tions are available in open-source [184]. Based on this distance, several approaches have
explored the possibility to define a representative diagram of an ensemble of persistence
diagrams, with the notion of Wasserstein barycenter. Turner et al. [187] introduced the
first approach for the computation of such a barycenter. Lacombe et al. [104] presented
an approach based on entropic transport [48,49]. However, it requires a pre-vectorization
step which is subject to several parameters, and which is not conducive to visualization
tasks (features can no longer be individually tracked beyond the pre-vectorization step).
In contrast, Vidal et al. [191] introduced a vectorization-free approach which maintains
the feature assignments explicitly. It is based on a progressive scheme, which greatly
accelerates computation in practice. These concepts have been recently investigated for
other topological descriptors, such as merge trees [149,199]. Recently, several authors have
investigated another compact representation of ensembles of topological descriptors, via a
basis of representative descriptors. For instance, Li et al. [112] introduce a vectorization for
merge trees, which was subsequently used by matrix sketching procedures [195] to create a
basis of representative merge trees. In contrast, our work focuses on persistence diagrams
(which can encode different features). Also, it directly operates on the Wasserstein metric
space of persistence diagrams, thereby avoiding the typical technical difficulties associated
with vectorizations (e.g. quantization and/or linearization artifacts, potential stability is-
sues, possible inaccuracies in vectorization reversal, etc.). Pont et al. [150] introduced the
notion of principal geodesic analysis of merge trees (and persistence diagrams), with the
same overall goal of characterizing the relations between the topological descriptors of
an ensemble. In this work, we introduce a different formulation of the problem, which is
both simpler (based on the construction of weighted Wasserstein barycenters) and more
flexible (our optimization is not subject to complicated constraints such as geodesic or-
thogonality). This results in a simpler implementation and slightly faster computations
(Sec. 3.6).

3.1.2 Contributions

This work makes the following new contributions:

1. A simple approach for the linear encoding of Persistence Diagrams: We formu-
late the linear encoding of an ensemble of persistence diagrams on their associated
Wasserstein metric space as a dictionary optimization (Sec. 3.3), which simply op-
timizes, simultaneously, (i) the barycentric weights (Sec. 3.3.2) and (ii) the atoms
of the dictionary (Sec. 3.3.3).

2. A multi-scale algorithm for the computation of a Wasserstein dictionary of Per-
sistence Diagrams: We introduce a novel, efficient algorithm for the optimization
of the above dictionary encoding problem. Our algorithm leverages the analytic
expressions of the gradient of both of the above sub-problems, to ensure fast it-
erations. Moreover, in comparison to a naive optimization, our algorithm reaches
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solutions of improved energy thanks to a multi-scale strategy. Finally, we leverage
shared-memory parallelism to further improve performances.

3. An application to data reduction: We present an application to data reduction
(Sec. 3.5.1), where the persistence diagrams of the input ensemble are significantly
compressed, by solely storing their barycentric weights as well as the atom diagrams.

3.2 Notations

This section presents the notations used for the formalization of this chapter. We first re-
define the notation used ton enumerate the elements in the topological data representation
that we use - the persistence diagram (Sec. 3.2.1) -, second we recall its associated metric
(Sec. 3.2.2) using the new notation. Then we define the notion of Wasserstein barycenter
of persistence diagrams (Sec. 3.2.3), which is a core component of our approach (Sec. 3.3).

3.2.1 Persistence diagrams

We refer to Sec. 2.3 for a complete definition of a persistence diagram.
For the sake of simplicity, in the remainder of this chapter, we enumerate the points

of a diagram X with indices such that X = {x1, . . . , xK} and we note iX = {1, . . . , K}
the set of indices (i.e. the set of all integers going from 1 to K) .

3.2.2 Wasserstein distance

We again refer to Sec. 2.3.3.1 for a complete definition and characterization of the Wasser-
stein distance between persistence diagrams. We still rewrite the Wasserstein distance
with the notation introduced in Sec. 3.2.1. Let us consider X1 = {x11, . . . , xK1

1 } and
X2 = {x12, . . . , xK2

2 }, recall that persistence diagrams have to be augmented before using
the Wasserstein distance. Given an off-diagonal point x (i.e. b < d), let ∆ be its diag-
onal projection, specifically: ∆ = ( b+d

2
, b+d

2
). Let P1 and P2 be the sets of the diagonal

projections of the points of X1 and X2 respectively. Then, X1 and X2 are augmented
into X1

′ and X2
′ by considering X1

′ = X1 ∪ P2 and X2
′ = X2 ∪ P1. This ensures that

|X ′

1| = |X ′

2| = K (which eases distance evaluation). We consider in the remainder of this
chapter that the notations X1 and X2 refer to augmented diagrams (i.e. |X1| = |X2| = K).

Using those notations, given two persistence diagrams X1 and X2 the 2-Wasserstein
distance between them is defined as:

W (X1, X2) = W2(X1, X2) = min
ψ:iX

bij−→iX

√

√

√

√

K
∑

j=1

c(xj1, x
ψ(j)
2 ), (3.1)

where ψ, the matching, in this chapter is a bijection of the index set iX towards itself (i.e.
ψ is a permutation of iX) and c = c2 as in Sec. 2.3.3.1.

3.2.3 Wasserstein barycenter

We give again the definition of a Wasserstein barycenter using the notation introduced pre-
viously in Sec. 3.2.1 and Sec. 3.2.2. Given a set of persistence diagrams D = {a1, . . . , am}
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(which we will call in the remainder dictionary), a Wasserstein barycenter (Fig. 2.11) –
or Fréchet mean – of the dictionary D with barycentric weights λ = (λ1, . . . , λm) is a
diagram, which we note Y (λ,D) in the following, which minimizes the Fréchet energy
EF (B):

EF (B) =
m
∑

i=1

λiW
2(ai, B).

λ is such that λi ≥ 0 and
m
∑

i=1

λi = 1. We denote Σm the simplex of such vectors.

Intuitively, Y (λ,D) is a diagram which minimizes the above linear combination, given λ,
of its squared Wasserstein distances to the diagrams of the dictionary D.

3.3 Wasserstein Dictionary Encoding

This section formalizes our approach for the Wasserstein dictionary encoding of an en-
semble of persistence diagrams. Sec. 3.3.1 provides an overview of our approach, which
interleaves barycentric weight optimization (λ) with atom optimization (D). Finally, Secs.
3.3.2 and 3.3.3 detail the gradient estimation for both sub-problems.

3.3.1 Overview

Let {X1, . . . , XN} be the input ensemble of N persistence diagrams. The goal of our
approach is to jointly optimize two sub-problems:

• Optimize a set D of m reference persistence diagrams, called the atoms of the
Wasserstein dictionary D;

• Optimize for each input diagram Xn a vector of m barycentric weights λn ∈ Σm,
in order to accurately approximate Xn with a Wasserstein barycenter Y (λn,D)
(Sec. 3.2.3).

This can be formalized as a joint optimization, where one wishes to find the opti-
mal barycentric weights Λ∗ = λ

∗
1, . . . ,λ

∗
N and the optimal Wasserstein dictionary D∗ =

{a∗1, . . . , a∗m} (with m≪ N), in order to minimize the following dictionary energy :

ED(Λ,D) =
N
∑

n=1

W 2
(

Y (λn,D), Xn

)

. (3.2)

Our overall strategy for optimizing Eq. 3.2 consists in iteratively interleaving two
sub-optimizations:

1. For a fixed dictionary D, the set of barycentric weights Λ is optimized with one step
of gradient descent (Sec. 3.3.2);

2. For a fixed set of barycentric weights Λ, the dictionary D is optimized with one step
of gradient descent (Sec. 3.3.3).
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Figure 3.1: Optimizing the weights of the barycenter Y (λ) (cyan diagram) to improve its
approximation of X (grey diagram), given a fixed Wasserstein dictionary D of 3 atoms
(dark blue, yellow, green). At a given iteration t (center), a step ρλ is made along the
gradient of the weight energy EW (cyan arrows), resulting in an improved estimation at
iteration t+ 1 (right).

Then, this sequence of two sub-procedures is iterated until a pre-defined stopping condi-
tion is reached (Sec. 3.4.2).

Finally, the output of our approach is the optimized Wasserstein dictionary D∗ (a
set of m atom diagrams) and, for each input diagram Xn, a vector of weights λ

∗
n ∈ Σm,

which can be interpreted as the barycentric coordinates of Xn in D∗ (thus capturing linear
relations between the input diagrams on the Wasserstein dictionary).

3.3.2 Weight optimization

This section details the optimization of the barycentric weights Λ = λ1, . . . ,λN . Let
D = {a1, . . . , am} be a fixed dictionary of atom diagrams, with m > 0. Let X be a
diagram of the input ensemble. For a given set of weights λ =

(

λ1, . . . , λm
)

, let Y (λ) =
{

y1(λ), . . . , yK(λ)
}

be the barycentric approximation of X, with K ∈ N∗ the size of Y (λ),
relative to D (i.e. each point yj(λ) of Y (λ) approximates a point in X).

We recall that after augmentation (Sec. 2.3.3.3), Y (λ) and the atoms contain
∑m

i=1 |ai|+
|Y (λ)| points each, where |ai| and |Y (λ)| denote the number of non-diagonal points in
ai and Y (λ) respectively. Then, in order to compare it to X, Y (λ) is further augmented
by projecting on its diagonal the |X| non-diagonal points of X. Then, at this stage, the
size K of Y (λ) is given by K =

∑m
i=1 |ai| + |Y (λ)| + |X|. We augment similarly X (i.e.

by projecting the non-diagonal points of Y (λ) to its diagonal) and the m atoms (i.e. by
projecting the non-diagonal points of X to their diagonals). Then, at this point, Y (λ),
X, and the m atoms ai all have the same size K =

∑m
i=1 |ai|+ |Y (λ)|+ |X|.

In this section, we describe a gradient descent on λ to minimize the weight energy :

EW (λ) = W 2
(

Y (λ), X
)

. (3.3)

A step of the corresponding gradient descent is illustrated in Fig. 3.1.

Given the set of optimal matchings ϕ1, . . . , ϕm between Y (λ) and the m atoms, the
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jth point of Y (λ), noted yj(λ), is given by:

∀j ∈ {1, . . . , K}, yj(λ) =
m
∑

i=1

λia
ϕi(j)
i . (3.4)

In other words, the jth point yj(λ) of the diagram Y (λ) is a linear combination (with
the weights λ) of the m points it matches to in the atoms (one point per atom ai), under
the optimal assignments ϕi (i.e. minimizing Eq. 3.1).

For a fixed set of assignments ϕ1, . . . , ϕm, the Wasserstein distance Eq. 3.1 between X
and its approximation Y (λ) is then:

EW (λ) = W 2
(

Y (λ), X
)

=
K
∑

j=1

c
(

yj(λ), xψ(j)
)

,

where ψ denotes the optimal assignment Eq. 3.1 between X and its approximation Y (λ).
When yj(λ) and xψ(j) are not both diagonal points, the cost c

(

yj(λ), xψ(j)
)

is given by their
squared Euclidean distance in the birth/death space (it is zero otherwise, see Sec. 2.3.3.1).
Then, by exploiting Eq. 3.4, EW (λ) can be re-written as:

EW (λ) = W 2
(

Y (λ), X
)

=
K
∑

j=1

∥yj(λ)− xψ(j)∥2

=
K
∑

j=1

∥

∥

∥

∥

∥

( m
∑

i=1

λia
ϕi(j)
i

)

− xψ(j)

∥

∥

∥

∥

∥

2

.

Since
m
∑

i=1

λi = 1, EW (λ) can finally be re-written as:

EW (λ) = W 2
(

Y (λ), X
)

=
K
∑

j=1

∥

∥

∥

∥

∥

m
∑

i=1

λi(a
ϕi(j)
i − xψ(j))

∥

∥

∥

∥

∥

2

. (3.5)

Intuitively, this energy measures the error (in terms of Wasserstein distance) induced
by approximating the input diagram X with its barycentric approximation Y (λ). In
Eq. 3.5, it is computed for each jth point yj(λ) of the diagram Y (λ), by considering the
birth/death distances between the points yj(λ) maps to, in the atoms on one hand and
in the input diagram X on the other.

Then, by applying the chain rule on Eq. 3.5, the gradient of the weight energy Eq. 3.3
is given by:

∇EW (λ) = 2
K
∑

j=1







(a
ϕ1(j)
1 − xψ(j))T

...

(a
ϕm(j)
m − xψ(j))

T







(

λi(a
ϕi(j)
i − xψ(j))

)

. (3.6)

Now that the gradient of the weight energy is available Eq. 3.6, we can proceed to
gradient descent. Specifically, the barycentric weights at the iteration t+ 1 (noted λ

t+1)
are obtained by a step ρλ from the weights at the iteration t (noted λ

t) along the gradient:

λ
t+1 = ΠΣm

(

λ
t − ρλ∇EW (λt)

)

, (3.7)
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where ΠΣm is the projection onto the simplex of admissible barycentric weights (i.e. pos-
itive and summing to 1, c.f. Sec. 3.2.3). ∇EW is L-Lipschitz as stated in the following
proposition.

Proposition 3.1 : Let X be a persistence diagram and D = (a1, . . . , am) a Wasserstein
dictionary of persistence diagrams. If the optimal matchings are constant, then EW (λ) =
W 2
(

Y (λ), X
)

is convex and ∇EW is L-Lipschitz on Σm.

Proof. Let λ = (λ1, . . . , λm) ∈ Σm, Y (λ) =
(

y1(λ), . . . , yK(λ)
)

the barycenter computed
and ϕλ,1, . . . , ϕλ,m the matchings between Y (λ) and each atom (a1, . . . , am):

∀j ∈ {1, . . . , K}, yj(λ) =
m
∑

i=1

λia
ϕλ,i(j)
i .

We suppose the optimal matchings to be constant, thus we write ϕi = ϕλ,i. We consider
the following gradient:

∇yj(λ) =
[

a
ϕ1(j)
1 . . . a

ϕm(j)
m

]

.

Now recall the following expression for:

W 2
(

Y (λ), X
)

= min
ψλ:iX

bij−→iX

(

K
∑

j=1

∥yj(λ)− xψ(j)∥2
)

.

This minimum is always attained, and with the hypothesis on the optimal matchings we
write. Thus we rewrite:

W 2
(

Y (λ), X
)

=
K
∑

j=1

∥yj(λ)− xψ(j)∥2 =
K
∑

j=1

∥

∥

∥

∥

∥

m
∑

i=1

λi(a
ϕi(j)
i − xψ(j))

∥

∥

∥

∥

∥

2

.

W 2
(

Y (λ), X
)

is convex with λ and the gradient follows naturally:

∇W 2
(

Y (λ), X
)

= 2
K
∑

j=1







(a
ϕ1(j)
1 − xψ(j))T

...

(a
ϕm(j)
m − xψ(j))

T







(

yj(λ)− xψ(j)
)

.

For the following part we denote Hj =
[

a
ϕ1(j)
1 − xψ(j) . . . a

ϕm(j)
m − xψ(j)

]

. The Hessian

then writes as H = H(λ) = 2
K
∑

j=1

(Hj)THj. This shows that λ 7→ W 2
(

Y (λ), X
)

is convex.

Indeed for u ∈ Rm we have:

uTHu = 2
K
∑

j=1

uT (Hj)THju = 2
K
∑

j=1

∥Hju∥2 ≥ 0

This also shows that ∇EW is L-Lipschitz with L = ∥H∥. For numerical reasons, we bound
L as follows:

L = ∥H∥ = 2

∥

∥

∥

∥

∥

K
∑

j=1

(Hj)THj

∥

∥

∥

∥

∥

≤ 2
K
∑

j=1

∥(Hj)THj∥ = 2
K
∑

j=1

∥Hj∥2.
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Thus for our algorithm, we consider the following gradient step:

ρ ≤
[

2
K
∑

j=1

∥Hj∥2
]−1

.

EW is also strictly convex by Prop. 3.2:

Proposition 3.2 : Let X be a persistence diagram and D = (a1, . . . , am) a Wasserstein
dictionary of persistence diagrams. If the optimal matchings are constant and at least
m + 1 points in the atoms are affinely independent (they do not belong to a common
affine line), then EW (λ) = W 2

(

Y (λ), X
)

is strictly convex.

Proof. Let λ = (λ1, . . . , λm) ∈ Σm, Y (λ) =
(

y1(λ), . . . , yK(λ)
)

the barycenter computed
and ϕλ,1, . . . , ϕλ,m the matchings between Y (λ) and each atom (a1, . . . , am):

∀j ∈ {1, . . . , K}, yj(λ) =
m
∑

i=1

λia
ϕλ,i(j)
i .

We suppose the optimal matchings to be constant, thus we write ϕi = ϕλ,i. We have
already computed (in Prop. 3.1) the Hessian H = H(λ):

H = 2
K
∑

j=1

(Hj)THj,

with Hj =
[

a
ϕ1(j)
1 − xψ(j) . . . a

ϕm(j)
m − xψ(j)

]

. It is clearly symmetric positive semi def-

inite, and our goal is to show that its kernel Ker(H) = {x ∈ Rm | Hx = 0} is null,
implying that H is in fact symmetric positive definite and thus EW is strictly convex. For
that we will first need to prove the following lemma:

Lemma 3.1 : Let A,B be two symmetric positive semi definite matrices, we have Ker(A+
B) = Ker(A) ∩ Ker(B).

Proof. Let A and B be two symmetric positive semi definite matrices of size m. First let
us take x ∈ Ker(A) ∩ Ker(B). We trivially have

(A+B)x = Ax+Bx = 0 + 0 = 0,

giving us x ∈ Ker(A+B), and consequently Ker(A) ∩ Ker(B) ⊂ Ker(A+B).
Now let us take x ∈ Ker(A+B). We have

xT (A+B)x = xTAx+ xTBx = 0.

But xTAx ≥ 0 and xTAx ≥ 0, as they are positive semi definite, consequently xTAx = 0
and xTBx = 0. We will prove that x ∈ Ker(A), the proof being the same for B. A
is symmetric positive semi definite, thus there exist Q an orthogonal matrix, i.e Q such
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QQT = QTQ = Im, and D a diagonal matrix with positive entries such that A = QDQT .
We have

0 = xTAx = xT (QDQT )x = yTDy,

with QTx = y. Also, D being diagonal with positive entries, it admits a square root noted
D1/2 such that (D1/2)T = D1/2 and D1/2D1/2 = D. This gives us:

0 = xTAx = yTDy = yTD1/2D1/2y = ∥D1/2y∥2,
and in particularD1/2y = 0. This means that y ∈ Ker(D1/2), and additionally y ∈ Ker(D)
as

Dy = D1/2D1/2y = D1/20 = 0.

Recall that y = QTx, this directly implies that DQTx = 0 and in particular

Ax = QDQTx = Q0 = 0,

thus x ∈ Ker(A). The same way, we can also prove that x ∈ Ker(B), yielding the result
Ker(A+B) ⊂ Ker(A) ∩ Ker(B).

A direct consequence of this lemma is

Ker(H) = Ker

(

K
∑

j=1

(Hj)THj

)

=
K
⋂

j=1

Ker
(

(Hj)THj
)

.

Also Ker
(

(Hj)THj
)

= Ker(Hj), indeed if ζ ∈ Ker
(

(Hj)THj
)

then 0 = ζT (Hj)THjζ =
∥Hjζ∥22 giving usHjζ = 0, then ζ ∈ Ker(Hj); and trivially ζ ∈ Ker(Hj) yields (Hj)THjζ =

(Hj)T0 = 0. Now recalling that Hj =
[

a
ϕ1(j)
1 − xψ(j) . . . a

ϕm(j)
m − xψ(j)

]

∈ R2×m,

ζ = (ζ1, . . . , ζm) ∈ Ker(Hj) if and only if ζ1, . . . , ζm are solutions of a system of two
equations with m parameters

{

(a
ϕ1(j)
1 − xψ(j))[0]ζ1 + . . .+ (a

ϕm(j)
m − xψ(j))[0]ζm = 0,

(a
ϕ1(j)
1 − xψ(j))[1]ζ1 + . . .+ (a

ϕm(j)
m − xψ(j))[1]ζm = 0.

This implies that ζ ∈
K
⋂

j=1

Ker
(

(Hj)THj
)

if it is solution ofK systems of two equations with

m parameters with K >> m. Unless at least K−m systems are equivalent, meaning that
at least K −m vectors a

ϕk(j)
k −xψ(j) are colinear, which is not possible with our condition

of having m+ 1 points affinely independent, the only solution is ζ = 0. Thus

Ker(H) = Ker

(

K
∑

j=1

(Hj)THj)

)

=
K
⋂

j=1

Ker
(

(Hj)THj
)

= {0}.

Prop. 3.1 and Prop. 3.2 ensure that a gradient step will guarantee an energy decrease
as long as we choose ρλ such that:

ρλ ≤









2
K
∑

j=1

∥

∥

∥

∥

∥

∥

∥

(a
ϕ1(j)
1 − xψ(j))T

...

(a
ϕm(j)
m − xψ(j))T

∥

∥

∥

∥

∥

∥

∥

2








−1

<
1

L
. (3.8)
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Figure 3.2: Optimizing the atoms of the Wasserstein dictionary D (dark blue, yellow and
green diagrams). At a given iteration t (center), a step ρD is made along the gradient of
the pointwise atom energy eA (arrows on each triangle), resulting in a dictionary (right)
that enables an improved barycentric approximation (Y (D), cyan) of the input diagram
X (grey).

Overall, for a given input diagram X, each iteration t of gradient descent for the opti-
mization of EW consists in the following steps:

1. Computing the Wasserstein barycenter Y (λt) (Sec. 3.2.3);

2. Computing the Wasserstein distance W 2
(

Y (λt), X
)

(Eq. 3.3);

3. Estimating the gradient ∇EW (λ) (Eq. 3.6);

4. Applying one step ρλ of gradient descent (Eq. 3.7).

3.3.3 Atom optimization

This section details the optimization of the atoms of the dictionary D = {a1, . . . , am}.
Similarly to Sec. 3.3.2, let X be a diagram of the input ensemble and let λ ∈ Σm

be its – fixed – vector of barycentric weights. For a given dictionary D, let Y (D) =
{

y1(D), . . . , yK(D)
}

be the barycentric approximation of X, relative to λ. In this sec-
tion, we describe a step of gradient descent on D to minimize the following atom energy :

EA(D) = W 2
(

Y (D), X
)

.

A step of the corresponding gradient descent is illustrated in Fig. 3.2.
Given the set of optimal matchings ϕ1, . . . , ϕm between Y (D) and the m atoms, the

jth point of Y (D), noted yj(D), is given by:

∀j ∈ {1, . . . , K}, yj(D) =
m
∑

i=1

λia
ϕi(j)
i .

This expression is identical to Eq. 3.4 (Sec. 3.3.2). However, yj now depends on D, which
is the variable of the current optimization. Then, the gradient of yj(D) with regard to D
is simply given by:

∇yj(D) =
[

λ1 · · · λm
]T
. (3.9)
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For a fixed set of assignments ϕ1, . . . , ϕm, the Wasserstein distance (Eq. 3.1) between
X and its approximation Y (λ) is then:

EA(D) = W 2
(

Y (D), X
)

=
K
∑

j=1

c
(

yj(D), xψ(j)
)

,

where ψ(j) denotes the optimal assignment between X and its barycentric approximation
Y (D). Similarly to Eq. 3.5 (Sec. 3.3.2), the above equation can be re-written as:

EA(D) = W 2
(

Y (D), X
)

=
K
∑

j=1

∥

∥

∥

∥

∥

m
∑

i=1

λi(a
ϕi(j)
i − xψ(j))

∥

∥

∥

∥

∥

2

.

Let Dj = [a
ϕ1(j)
1 , . . . , a

ϕm(j)
m ]T be the (m×2)-matrix formed by the atom points match-

ing to a given point yj(D) of Y (D), via the fixed assignments ϕ1, . . . , ϕm. Specifically,

the ith line of this matrix refers to the point a
ϕi(j)
i in the atom ai where yj(D) maps to

(via the optimal assignment ϕi). For this line, the two columns of the matrix encode the

birth/death coordinates of the point a
ϕi(j)
i . Then, the pointwise atom energy of yj(D),

noted eA(Dj), is given by:

eA(Dj) =

∥

∥

∥

∥

∥

m
∑

i=1

λi(a
ϕi(j)
i − xψ(j))

∥

∥

∥

∥

∥

2

. (3.10)

Then, by applying the chain rule on Eq. 3.10 (using Eq. 3.9), the gradient of the
pointwise atom energy is given by:

∇eA(Dj) = 2
[

λ1 · · · λm
]T (

m
∑

i=1

λi(a
ϕi(j)
i − xψ(j))T

)

. (3.11)

Now that the gradient of the pointwise atom energy is available (Eq. 3.11), we can
proceed to a step of gradient descent. Specifically, the matrix of atom points matched to
yj(D) at the iteration t + 1 (noted Dj

t+1) is obtained by a step ρD from the same matrix

at the iteration t (noted Dj
t ) along the gradient:

Dj
t+1 = ΠX

(

Dj
t − ρD∇eA(Dj

t )
)

, (3.12)

where ΠX projects each atom point to an admissible region of the 2D birth/death space
(i.e. above the diagonal and within the global scalar field range). Again ∇eA is L-Lipschitz
and eA is strictly convex:

Proposition 3.3 : Let X be a persistence diagrams and λ = (λ1, . . . , λm) ∈ Σm. If the
optimal matchings are constant, the functions eA are convex and the gradients ∇eA are
L-Lipschitz.

Proof. Let U = (u1, . . . , um) ∈ (R2)m, for j ∈ {1, . . . , K} we have:

eA(U) =

∥

∥

∥

∥

∥

m
∑

i=1

λi(ui − xψ(j))

∥

∥

∥

∥

∥

2
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The gradient follows naturally:

∇eA(U) = 2







λ1
...
λm







(

ui − xψ(j)
)

T

Immediately we have the Hessian Hj = Hgj(U) = 2λλT , giving us the convexity of eA
and the L-Lipschitzianity of ∇eA with L = ∥Hj∥ ≤ 2∥λ∥2 ≤ 2m. For numerical reasons,
we consider the larger upper bound: L ≤ 4m. Thus for our algorithm, we consider the
following gradient step ρ ≤ (4m)−1.

This ensures that a gradient step will guarantee an energy decrease as long as:

ρD < (4m)−1 < L−1

.
Note that, in order to control the final size Sm of the dictionary D, after each iteration

of atom optimization, each atom ai is thresholded by removing its K = (mK − Sm)/m
least persistent points (at the subsequent optimization iteration, all diagrams will be
re-augmented again in a pre-preprocess, as detailed in Sec. 3.3.2).

Overall, for a given input diagram X, each iteration t of gradient descent for the
optimization of EA consists of the following steps:

1. Computing the Wasserstein barycenter Y (Dt) (Sec. 3.2.3);

2. Computing the Wasserstein distance W 2
(

Y (Dt), X
)

(Eq. 3.3);

3. For each point yj(D) of Y (D):

(a) Estimating the gradient ∇eA(Dj) (Eq. 3.11);

(b) Applying one step ρD of gradient descent on Dj (Eq. 3.12);

4. Remove the K least persistent points from each atom ai.

3.4 Algorithm

This section presents our overall algorithm for the resolution of the optimization formu-
lated in Sec. 3.3. Sec. 3.4.1 details our initialization strategy. Our overall multi-scale
scheme is presented in Sec. 3.4.2. Finally, shared-memory parallelism is discussed in
Sec. 3.4.3.

3.4.1 Initialization

Our strategy for the initialization of the Wasserstein dictionary D, illustrated in Fig. 3.3,
is inspired by the celebrated k-means++ strategy [42]. Specifically, we iteratively select
the m atoms among the N input diagrams. At the first iteration, we select as first atom
the diagram which maximizes the sum of its Wasserstein distances (Eq. 3.1) to all the
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Figure 3.3: Illustration of our initialization strategy on a toy 2D point set (top left). First,
the entries of the distance matrix of the input (middle) are summed on a per-line basis.
The line maximizing this sum (cyan), noted l1, identifies the first atom, noted a1, as the
point which is the furthest away from all the others (cyan sphere, top right). Next, the
atom a2 (grey sphere, top right) is selected as the point which maximizes its distance to
a1. At this point, the line l2 (grey, corresponding to the point a2) is added to the line l1,
to encode the distances to these two atoms (a1 and a2). Then, the point a3 is selected as
the maximizer of l1 + l2: it is the point which is the furthest away from all the previously
selected atoms. Then, the corresponding line, l3, is added to l1 + l2 and the process is
iterated until the target number of atoms has been achieved.

input diagrams (cyan point in Fig. 3.3). Next, each iteration selects as the next atom
the diagram which maximizes the sum of its Wasserstein distances to all the previously
selected atoms. This process stops when the desired number of atoms, m, has been
selected. As illustrated in Fig. 3.3 in the case of a toy 2D point set, this initialization
strategy has the nice property that it tends to select atoms on the convex hull of the input
point set, which ensures that the non-atom points can indeed be expressed as a convex
combination of the atoms, hence leading to accurate initial barycentric approximations.
As for the barycentric weights, these are uniformly initialized (i.e. to 1/m).
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3.4.2 Multi-scale optimization algorithm

In real-life data, persistence diagrams tend to contain many low-persistence features,
which essentially encode the noise in the data (see Fig. 2.9, right). In this section, we
present a multi-scale optimization strategy which addresses this issue by prioritizing the
optimization on the most persistent pairs, which correspond to the most salient features
of the data. As detailed in Sec. 3.6.2, this strategy leads the optimization to solutions of
improved energy in comparison to a naive (non-multi-scale) approach.

Our multi-scale strategy consists in iterating our optimization procedure by progres-
sively increasing the resolution (in terms of persistence) of the input diagrams. This
is inspired by the progressive strategy by Vidal et al. [191] for the problem of Wasser-
stein barycenter optimization. Specifically, given an input diagram X of a scalar field
f : M → R with M a manifold, let ∆f be the span in scalar values in the corresponding
ensemble member (i.e. ∆f = maxv∈M f(v)−minv∈M f(v)). Given a threshold τ ∈ [0, 1],
we note Xτ = {x ∈ X| dx − bx ≥ τ∆f} the version of X at resolution τ . It is a sub-
set of X which contains persistence pairs whose relative persistence is above τ . Note
that the input diagrams are not normalized by persistence, which would prevent the cap-
ture of variability in data ranges within the ensemble. Instead, we normalize the above
persistence threshold, by expressing it as a fraction τ ∈ [0, 1] of the scalar field range ∆f .

Figure 3.4: Multi-resolution representation of an input persistence diagram (taken from
the Isabel ensemble). At a given resolution (from left to right), only the persistence pairs
above a given persistence threshold (red dash line) are considered in the optimization.

Then, our multi-scale optimization will first consider the input diagrams at a resolution
τ0 and then will progressively consider finer resolutions τ1, . . . , τr until the full diagrams
are considered at τr = 0. This multi-resolution strategy, based on a per-diagram normal-
ized persistence threshold (τ ∈ [0, 1]) prevents diagrams from being empty in the early
resolutions in case of large variations in data range within the ensemble (which would
occur for instance with a per-ensemble normalization). The multi-resolution is illustrated
in Fig. 3.4. In our experiments, we set τ0 = 0.2 and decrease τ by 0.05 at each resolu-
tion (i.e. τ1 = 0.15, τ2 = 0.10, τ3 = 0.05, τ4 = 0). At each resolution, the solution for
the previous resolution is used as an initialization. Note that alternative strategies were
considered for decreasing τ (for instance by dividing it by 2 at each resolution), but the
best experimental results were obtained for the above decrease strategy.

Alg. 1 summarizes our overall approach. For each sub-optimization (i.e. weight and
atom optimization), although each gradient step is guaranteed to decrease the corre-
sponding energy (see the end of Secs. Sec. 3.3.2 and Sec. 3.3.3), this is only true for fixed
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Algorithm 1: Multi-scale Wasserstein Dictionary Optimization.

Input: Set of persistence diagrams {X1, . . . , XN};
Output 1: Wasserstein Dictionary D∗;
Output 2: Barycentric weights λ

∗
1, . . . ,λ

∗
N ;

for τ ∈ {τ0, . . . , τr} do
if τ == τ0 then

Initialization (Sec. 3.4.1);
end
while ED (Eq. 3.2) decreases do

for n ∈ {1, . . . , N} do
Perform a gradient step ρλn along ∇EW relative to Xn (Sec. 3.3.2);

end
for n ∈ {1, . . . , N} do

Perform a gradient step ρD along ∇EA relative to Xn (Sec. 3.3.3);
end

end

end

assignments (between a diagram X and its barycentric approximation as well as between
the barycentric approximation and the atoms). Since the assignments can change along
the iterations of the optimization, the overall energy ED (Eq. 3.2) may increase between
consecutive iterations. Hence, pragmatic stopping conditions need to be considered. In
practice, if ED has not decreased for more than 10 iterations, we return the solutions λ

∗

and D∗ reached by the optimization with the lowest energy ED.

3.4.3 Parallelism

Our approach can be trivially parallelized with shared-memory parallelism. First, its
most computationally demanding task, the N barycentric approximations of the input
diagrams can be computed independently. Thus, for each barycentric approximation,
we use one parallel task per input diagram. Next, the estimation of the gradient of EW
(Sec. 3.3.2) is done on a per input diagram basis, independently. Thus, we use one parallel
task per input diagram. Regarding the estimation of the gradient of EA (Sec. 3.3.3),
given a barycentric approximation Y (D) of an input diagram X, each of its points yj(D)
defines independently a pointwise version of the gradient of the atom energy (see the last
paragraph of Sec. 3.3.3). Thus, we use one parallel task per point yj(D) of a barycentric
approximation Y (D) of an input diagram X.

3.5 Applications

This section illustrates the utility of our approach in concrete visualization tasks: data
reduction and dimensionality reduction.
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3.5.1 Data reduction

Like any data representation, persistence diagrams can benefit from lossy compression.
This can be useful in in-situ [17] use-cases, where time-steps are represented on permanent
storage with topological signatures [36]. In such scenarios, lossy compression is useful
to facilitate the manipulation (i.e. storage and transfer) of the resulting ensemble of
persistence diagrams. We present now an application to data reduction where the input
ensemble of persistence diagrams is compressed, by only storing to disk:

(i) the Wasserstein dictionary of persistence diagrams D∗ and

(ii) the N barycentric weights λ
∗
1, . . . ,λ

∗
N .

The compression quality can be controlled with two input parameters (i) the number
of atoms m and (ii) the maximum Sm of the total size of the atoms (i.e.

∑m
i=1 |ai|). The

reconstruction error (given by the energy ED, Eq. 3.2.) will be minimized for large values
of both parameters, while the compression factor will be maximized for low values. In our
data reduction experiments, we set the number of atoms m to the number of ground-truth
classes of each ensemble, as documented in the ensemble descriptions [149]. Moreover, we
set Sm to c−1

f

∑N
i=1 |Xn|, where cf is a target compression factor and |Xn| is the number of

non-diagonal points in the input diagram Xn (see Sec. 3.6.2 for a quantitative evaluation).

Fig. 3.5 (left) provides a visual comparison between the diagram compressed with this
strategy (bottom insets) and the original diagram (top insets), for three members of the
Isabel ensemble. This experiment shows that diagrams can be significantly compressed
(cf = 5.49), while still faithfully encoding the main features of the data. Fig. 3.6 (left)
provides a similar visual comparison for the Ionization front (3D) ensemble (cf = 2.9).

We have applied our data reduction approach to topological clustering [191], where
the main trends within the ensemble are identified by clustering the ensemble members
based on their persistence diagrams. For the large majority of our test ensembles, the
outcome of the clustering algorithm [191] was identical when used with the input diagrams
or our compressed diagrams (Sec. 3.6.3 documents a counter-example). This confirms the
viability and utility of our data reduction scheme.

3.5.2 Dimensionality reduction

Our framework can also be used to generate low-dimensional layouts of the ensemble, for
its global visual inspection. Specifically, we generate 2D planar layouts by using m = 3
atoms and by embedding our Wasserstein dictionary D∗ as a triangle in the plane, such
that its edge lengths are equal to the Wasserstein distances between the corresponding
atoms. Next, each diagram X of the input ensemble is embedded as a point in this triangle
by using its barycentric weights λ

∗ as barycentric coordinates.

As illustrated in Figs. 3.5 (right) and 3.6 (right), our dimensionality reduction provides
a planar overview of the ensemble which groups together diagrams which are close in terms
of Wasserstein distances. Specifically, in both examples, the ground-truth classification
of the ensemble is visually respected: the points of a given class (same color) indeed form
a distinct cluster in the planar view.

56



3.5. Applications

Figure 3.5: Visual comparison (left) between the input persistence diagrams (top insets,
saddle-maximum persistence pairs only) and our compressed diagrams (bottom insets,
Sec. 3.5.1, saddle-maximum persistence pairs only) for three members of the Isabel en-
semble (one member per ground-truth class). For each member, the sphere color encodes
the matching between the input and the compressed diagrams (for the meaningful per-
sistence pairs, above 10% of the function range). This visual comparison shows that the
main features of the diagrams (encoding the main hurricane wind gusts in the data) are
well preserved by the data reduction, especially for the members coming from the clus-
ter 2, for which a lower relative reconstruction error (Err) can be observed. The planar
overview of the ensemble (right) generated by our dimensionality reduction (Sec. 3.5.2)
enables the visualization of the relations between the different diagrams of the ensemble.
Specifically, this illustration shows a larger disparity for two clusters.

Figure 3.6: Visual comparison (left) between the input persistence diagrams (top insets)
and our compressed diagrams (bottom insets, Sec. 3.5.1) for four members of the Ioniza-
tion front (3D) ensemble (one member per ground-truth class). The color encoding is the
same as in Fig. 3.5. This visual comparison shows that the main features of the diagrams
(the extremities of the ionization front) are well preserved by the data reduction, espe-
cially for the members coming from the clusters 2 and 3, for which a lower reconstruction
error (Err) can be observed. The planar overview of the ensemble (right) generated by our
dimensionality reduction (Sec. 3.5.2) enables the visualization of the relations between the
diagrams of the ensemble. Specifically, it shows a larger disparity for the clusters 0 and 1
(spread out purple and pink spheres), which are also the most difficult to reconstruct.
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3.6 Results

This section presents experimental results obtained on a computer with two Xeon CPUs
(3.2 GHz, 2x10 cores, 96GB of RAM). The input persistence diagrams were computed
with the Discrete Morse Sandwich algorithm [75]. We implemented our approach in C++
(with OpenMP), as modules for TTK [184], [23]. Experiments were ran on the benchmark
of public ensembles [148] described in [149], which includes simulated and acquired 2D
and 3D ensembles from previous work and past SciVis contests [133]. The considered
type of persistence pairs (i.e. the index of the corresponding critical points, Sec. 3.2.1)
was selected on a per-ensemble basis, depending on the features of interest present in
the ensemble. All types of pairs (i.e. minimum-saddle pairs, saddle-saddle pairs and
saddle-maximum pairs) were considered for the following ensembles: Cloud processes,
Isabel, Starting Vortex, Sea Surface Height, Vortex Street. Only the persistence pairs
including extrema were considered for the ensembles Ionization front (2D) and Ionization
front (3D). Finally, only the persistence pairs containing maxima were considered for
the remaining ensembles: Asteroid Impact, Dark Matter, Earthquake, Viscous Fingering,
Volcanic Eruptions.

3.6.1 Time performance

The most computationally expensive part of our approach is the computation of the N
Wasserstein barycenters, for which we use the algorithm by Vidal et al. [191]. Each
iteration of barycenter optimization approximatively requires O(mK2) steps in practice
(where K is the size of the augmented diagrams, cf. Sec. 3.2.2). As discussed in Sec. 3.4.3,
each barycenter is computed in parallel. The evaluations of the gradient of the weight
energy (Sec. 3.3.2) and the atom energy (Sec. 3.3.3) both require O(NmK) steps. As
described in Secs. 3.3.2 and 3.3.3, both evaluations can be run in parallel.

Tab. 3.1 evaluates the practical time performance of our multi-scale algorithm for
the optimization of the Wasserstein dictionary. In sequential, the runtime is roughly a
function of the number of input diagrams (N) as well as their average size (|X|). The
parallelization of our algorithm (with 20 cores) induces a significant speedup (up to 18 for
the largest ensembles), resulting in an average computation time below 5 minutes, which
we consider to be an acceptable pre-processing time, prior to interactive exploration. In
comparison to the principal geodesic analysis of persistence diagrams (Tab. 1 of [150]), on
a per ensemble basis, our approach is 1.56 times faster on average (on the same hardware).

3.6.2 Framework quality

Tab. 3.2 reports compression factors and average relative reconstruction errors for our ap-
plication to data reduction (Sec. 3.5.1). For each ensemble, the compression factor is the
ratio between the storage size of the input diagrams and that of the Wasserstein dictionary
D∗ (the m atoms, of average size |a|, plus the N sets of barycentric weights). The relative
reconstruction error is obtained by considering the Wasserstein distance between an input
diagram and its barycentric approximation, divided by the maximum pairwise Wasser-
stein distance observed in the input ensemble. Then this relative reconstruction error
is averaged over all the diagrams of the ensemble. Tab. 3.2 compares a naive optimiza-
tion (Sec. 3.3) to our multi-scale strategy (Sec. 3.4.2). Specifically, for a given ensemble,
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Table 3.1: Running times (in seconds) of our multi-scale algorithm (1 and 20 cores).

Dataset N |X| 1 core 20 cores Speedup
Asteroid Impact (3D) 20 220 259 35 7.50
Dark matter (3D) 40 216 1,323 188 7.04
Earthquake (3D) 12 97 113 92 1.23
Ionization front (3D) 16 757 4,230 595 7.11
Isabel (3D) 12 1,310 1,609 270 5.96
Viscous Fingering (3D) 15 158 252 49 5.14
Cloud processes (2D) 12 1,176 914 64 14.28
Ionization front (2D) 16 186 145 45 3.22
Sea surface height (2D) 48 1,567 14,587 792 18.42
Starting vortex (2D) 12 125 140 24 5.83
Vortex street (2D) 45 43 1,061 241 4.40
Volcanic eruptions (2D) 12 860 2,798 706 3.96

Table 3.2: Comparison of the average relative reconstruction error (for a common target
compression factor), between a naive optimization (Sec. 3.3) and our multi-scale strategy
(Sec. 3.4.2). Our multi-scale algorithm improves the error by 30% on average over the
naive approach.

Dataset N |X| m |a| Factor Error (Naive) Error (Multi-Scale)
Asteroid Impact (3D) 20 220 4 493 2.20 0.09 0.06
Dark matter (3D) 40 216 4 215 10.87 0.15 0.12
Earthquake (3D) 12 98 3 120 3.05 0.16 0.04
Ionization front (3D) 16 757 4 1,044 2.90 0.29 0.20
Isabel (3D) 12 1,310 3 1,049 5.49 0.34 0.37
Viscous Fingering (3D) 15 158 3 41 2.78 0.15 0.11
Cloud processes (2D) 12 1,176 3 381 5.97 0.38 0.41
Ionization front (2D) 16 186 4 300 2.68 0.38 0.17
Sea surface height (2D) 48 1,567 4 534 20.98 0.54 0.61
Starting vortex (2D) 12 125 2 379 1.98 0.22 0.09
Vortex street (2D) 45 43 5 75 5.08 0.18 0.04
Volcanic eruptions (2D) 12 860 3 345 9.97 0.20 0.20

the same target compression factor was used for both approaches (by imposing the same
upper boundary on the total size of the atoms, Sec. 3.5.1). Tab. 3.2 shows that our multi-
scale strategy (Sec. 3.4.2) enables the optimization to progress towards better solutions,
as assessed by the improvement in reconstruction error of 30% on average. In comparison
to the principal geodesic analysis of persistence diagrams (Appendix D of [150]), for the
same compression factors, the error induced by our approach is on average 1.79 times
larger. However, our approach is simpler, more flexible (our optimization is not subject
to restrictive constraints, such as geodesic orthogonality) and slightly faster (Sec. 3.6.1).

Fig. 3.7 provides a visual comparison between the 2D layouts obtained with our ap-
proach on the Isabel ensemble and those obtained with two typical dimensionality re-
duction techniques, namely MDS [102] and tSNE [189], directly applied on the distance
matrix obtained by computing the Wasserstein distance between all the pairs of input
diagrams. For a given technique, to quantify its ability to preserve the structure of the
ensemble, we run k-means in the 2D layouts and evaluate the quality of the resulting
clustering (given the ground-truth [149]) with the normalized mutual information (NMI)
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Figure 3.7: Comparison between the 2D layouts obtained with our approach (W2-Dict)
and these obtained with typical dimensionality reduction approaches (W2-MDS [102],
W2-tSNE [189]) on the Isabel ensemble (all persistence pairs are considered). Here, the
three approaches preserve well the clusters of the ensemble (NMI/ARI). As expected,
W2-MDS provides (by design) the best metric preservation (SIM, bold). Our approach
constitutes a trade-off between W2-MDS and W2-tSNE.

Figure 3.8: Comparison between the 2D layouts obtained with our approach (W2-Dict)
and these obtained with typical dimensionality reduction approaches (W2-MDS [102],
W2-tSNE [189]) on a challenging ensemble. In this example (Asteroid Impact), the pres-
ence of an outlier (time step of the actual impact, red entry in the distance matrix, left)
challenges cluster preservation. While W2-tSNE provides the best cluster preservation
scores (NMI/ARI), it fails at visually depicting the outlier (red circle) as being far away
from the other ensemble members. In contrast, W2-MDS and W2-Dict do a better job
at isolating this outlier (red circle), with W2-Dict providing slightly improved cluster
preservation scores (NMI/ARI).

and adjusted rand index (ARI). To quantify its ability to preserve the geometry of the
ensemble, we report the metric similarity indicator SIM [150], which evaluates the preser-
vation of the Wasserstein metric in the 2D layout. All these scores vary between 0 and
1, with 1 being optimal. In Fig. 3.7, the three approaches preserve well the clusters of
the ensemble (NMI/ARI) and our approach provides a trade-off between MDS and tSNE
in terms of metric preservation (SIM). Fig. 3.8 provides another visual comparison on a
challenging ensemble (Asteroid Impact). There, the presence of an outlier (time step of
the actual impact) challenges cluster preservation. While tSNE provides the best cluster
preservation (NMI/ARI), it fails at visually depicting the outlier (red circle) as being far
away from the other ensemble members. In contrast, MDS and our approach do isolate
this outlier (red circle), with our approach providing slightly improved cluster preserva-
tion (NMI/ARI) over MDS. This illustrates the viability of our dimensionality reductions
for outlier detection. Appendix A extends this visual analysis to all our test ensembles.
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Table 3.3: Detailed layout quality scores (i.e. bold: best values). On average (bottom
row), our approach (W2-Dict) provides a trade-off between W2-MDS and W2-tSNE : it
preserves the clusters (NMI/ARI) slightly better than W2-MDS and the metric (SIM)
clearly better than W2-tSNE.

NMI ARI SIM
Dataset W2-MDS W2-tSNE W2-Dict W2-MDS W2-tSNE W2-Dict W2-MDS W2-tSNE W2-Dict
Asteroid Impact (3D) 0.44 0.86 0.49 0.15 0.76 0.20 0.91 0.89 0.83
Dark Matter (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.68 0.84
Earthquake (3D) 0.65 0.61 0.65 0.37 0.44 0.37 0.96 0.72 0.91
Ionization Front (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.71 0.71
Isabel (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.73 0.78
Viscous Fingering (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.64 0.89
Cloud Processes (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.55 0.68
Ionization Front (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.74 0.83
Sea Surface Height (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.73 0.79
Starting Vortex (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.72 0.84
Street Vortex (2D) 1.00 0.14 1.00 1.00 -2e-4 1.00 0.89 0.96 0.81
Volcanic Eruption (2D) 0.66 1.00 0.66 0.41 1.00 0.41 0.81 0.74 0.74
Average 0.896 0.884 0.900 0.827 0.849 0.832 0.870 0.734 0.804

Tab. 3.3 extends our quantitative analysis to all our ensembles. MDS preserves well
the metric (high SIM), at the expense of mixing ground-truth classes (low NMI/ARI).
tSNE behaves symmetrically (higher NMI/ARI, lower SIM). Our approach provides a
trade-off between the extreme behaviors of MDS and tSNE, with a cluster preservation
slightly improved over MDS (NMI/ARI), and a clearly improved metric preservation over
tSNE (SIM).
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Figure 3.9: Evolution of the (normalized) energy ED along the optimization, with a naive
optimization (Sec. 3.3), for all our test ensembles.

Fig. 3.9 reports the evolution of the normalized energy ED along the optimization for
all test ensembles, for the naive optimization strategy (Sec. 3.3), by using a number of
atoms equal to the number of ground-truth classes (cf. our application to data reduction,
Sec. 3.5.1). In this figure, the energy is normalized on a per ensemble basis, based on
its initial value. This figure shows that the energy does decrease for most ensembles,
but still with large oscillations due to the non-convex nature of the dictionary energy
ED. In contrast, the energy evolution with our multi-scale strategy (Fig. 3.10) results in
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Figure 3.10: Evolution of the (normalized) energy ED along the optimization, with our
multi-scale strategy (Sec. 3.4.2), for all our test ensembles.
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Figure 3.11: Comparison of the evolutions of the (normalized) energy ED between the
naive optimization (Sec. 3.3, N, dashed curves) and our multi-scale strategy (Sec. 3.4.2,
MS, solid curves) for four ensembles. For this experiment, the energy has been normalized
with regard to the initial energy of the naive optimization. The Cloud Processes ensemble
is an example where the naive optimization reaches a solution of slightly lower energy.
For the other three ensembles, our multi-scale strategy leads to solutions of much lower
energy, through a sequence of characteristic, discontinuous decrease patterns (abrupt
drop followed by a plateau) corresponding to the five persistence scales of our multi-scale
strategy.

much less oscillations, which indicates the ability of this strategy to help the optimization
explore in a more stable manner the locally convex areas of the energy (Appendix B
discusses a counter-example). Specifically, in Fig. 3.10, one can observe sequences of
discontinuous decrease patterns, characterized by an abrupt drop followed by a plateau.
Each of these patterns corresponds to one persistence scale of our multi-scale strategy
(this is particularly apparent on the Cloud Processes ensemble).
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Figure 3.12: Counter-example for our multi-scale strategy (Sea Surface Height ensemble).
Top: Wasserstein distance matrices for the first four persistence scales of our multi-scale
strategy. The ground-truth classes only start to become visible in the distance matrix
between the third and fourth scale (dashed sub-matrices in the fourth scale). As a result,
our multi-scale strategy is attracted in the first scales towards a local minimum of the
energy which does not encode well the ground-truth classes (dimensionality reduction,
bottom left). In contrast, the naive optimization manages to reach a solution which
separates well the ground-truth classes (dimensionality reduction, bottom right).

Fig. 3.11 provides a closer comparison between the two strategies on a selection of four
ensembles. The Cloud Processes ensemble is an example where the naive optimization
reaches a solution of slightly lower energy. For the other ensembles, our multi-scale
strategy leads to solutions of much lower energy, visually confirming the conclusions of
Tab. 3.2. In this figure, one can also observe the characteristic decrease patterns discussed
above, particularly apparent on the Ionization Front (3D) ensemble, which correspond to
the distinct scales of our multi-scale strategy.

3.6.3 Limitations

Similarly to other optimization problems based on topological descriptors [149, 150, 187,
191], our energy is not convex. Additionally, as shown in Fig. 3.9, the interleaving of
the weight optimization (Sec. 3.3.2) with atom optimization (Sec. 3.3.3) can even lead to
oscillations in the energy. As discussed in Sec. 3.6.2, our multi-scale strategy (Sec. 3.4.2)
greatly mitigates both issues, with a more stable optimization than a naive approach
(Sec. 3.3), which leads to relevant solutions which are exploitable in the applications
(Sec. 3.5). However, we have found one example in our test ensembles (the Sea Surface
Height ensemble), where our multi-scale strategy reached solutions which were arguably
worse than these obtained with a naive solution, as described in details in Fig. 3.12. In this
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example, the most persistent features in the diagrams are not particularly discriminative
for the separation of the ground-truth classes. On the contrary, the variations between
these classes seem mostly encoded by the low persistence features: in Fig. 3.12 clear
separations in the distance matrices between the ground-truth classes only start to occur
in the latest persistence scales (dashed sub-matrices, top right inset). This counter-
intuitive observation goes against the rule of thumb traditionally used in topological data
analysis, which states that the most persistent pairs encode the most important features
in the data. For this example, when applying our framework to dimensionality reduction,
the non-discriminative aspect of the early persistence scales eventually lead our multi-
scale strategy towards a local minium which does not separate the ground-truth classes
well (planar layout, bottom left) in comparison to the naive strategy (planar layout,
bottom right). Thus, for this ensemble, we reported dimensionality reduction results
(Tab. 3.3,Appendix A) obtained with the naive optimization. In general, this means that
when users are confronted with ensembles where the most persistent pairs are not the
most responsible for data variability (hence class separation), the naive optimization may
need to be considered additionally as it might provide solutions which better encode the
ground-truth classes.

Finally, as detailed in Appendix B, the presence of clear outliers can also challenge
our optimization, especially when the selected number of atoms equals the number of
ground-truth classes. Then, in this case, the best dictionary encoding will consequently
be obtained by increasing the number of atoms, specifically, by considering that each
outlier forms a singleton class.

3.7 Summary

In this chapter, we presented an approach for the encoding of linear relations between
persistence diagrams, given the Wasserstein metric. Specifically, we introduced a dictio-
nary based representation of an ensemble of persistence diagrams, inspired by previous
work on histograms [167]. We first documented a naive optimization, which interleaves
the optimization of the barycentric weights of the input diagrams with the optimization
of the atoms of the dictionary (Sec. 3.3). Then, we presented a multi-scale strategy
(Sec. 3.4.2) leading to more stable optimizations and relevant solutions (Sec. 3.6.2). We
demonstrated the utility of our contributions in applications (Sec. 3.5) to data reduction
and dimensionality reduction, where the visualizations generated by our framework en-
able the visual identification of the main trends in the ensembles (Figs. 3.5, 3.6), and
the quick identification of outliers (Fig. 3.8). In contrast to previous work on persistence
diagram encoding [150], our framework is simpler, less constrained and slightly faster in
practice.
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Chapter 4

Robust Barycenters of Persistence

Diagrams

This chapter presents a general approach for computing robust Wasserstein barycen-
ters [5, 187, 191] of persistence diagrams. The classical method consists in computing as-
signment arithmetic means after finding the optimal transport plans between the barycen-
ter and the persistence diagrams. However, this procedure only works for the transporta-
tion cost related to the Wasserstein distance W2. We exploit an alternative fixed-point
method [181] to compute a barycenter for generic transportation costs, in particular those
robust to outliers. We illustrate the utility of our work in two applications: (i) the cluster-
ing of persistence diagrams on their metric space and (ii) the dictionary-based encoding
of ensembles of persistence diagrams [173]. In both scenarios, we demonstrate the added
robustness to outliers provided by our generalized framework.
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4.1 Introduction

To find a representative of an ensemble of persistence diagrams, notions from optimal
transport [95,121] were adapted to persistence diagrams. A central notion is the so-called
Wasserstein distance [164]. The Wasserstein distance between persistence diagrams [58]
(Sec. 4.2.1) has been studied by the TDA community [44,45]. This distance is computed
by solving an assignment problem, for which exact [124] and approximate [19, 97] im-
plementation can be found in open-source [23, 69]. Using this distance, the Wasserstein
barycenter is used to find a representative diagram of an ensemble, [5]. Turner et al. [187]
first introduced an algorithm for the computation of such a barycenter for persistence
diagrams, along with convergence results and theoretical properties of the persistence di-
agram space. Lacombe et al. [104] proposed a method to compute a barycenter based on
the entropic formulation of optimal transport [48, 49]. However, this method requires a
vectorization of persistence diagrams, which is not only subject to parameters, but which
also challenges visual analysis and inspection. Indeed, in this case the features of interest
cannot be tracked by the users during the analysis. Vidal et al. [191] proposed an approach
allowing the tracking of the features. This method is based on a progressive framework,
which accelerates the computation time compared to Turner et al.’s method [187]. To
take it further, several authors have proposed methods to find a representation of en-
sembles of topological descriptors by a basis of representative descriptors. Li et al. [112]
leveraged sketching methods [195] for vectorized merge trees. Pont et al. [150] introduced
a principal geodesic analysis method for merge trees, and in Chapt. 3 we brought forth a
Wasserstein dictionary encoding method for an ensemble of persistence diagrams. Both
latter methods avoid the difficulties associated with vectorizations (e.g. quantization and
linearization artifacts, inaccuracies in vectorization reversal). However, all of the above
literature propose representatives that can be sensible to the presence of outliers. Turner
et al. [186] studied the notion of median of a population of persistence diagrams, but no
exact algorithm nor computation was proposed. In this work, we describe a general frame-
work for computing a robust barycenter, by adapting a recent fixed point method [181]
from generic probability measures to persistence diagrams. This robust barycenter is more
stable to the presence of outliers, thereby enhancing other analysis frameworks such as
clustering algorithms or dictionary-based encodings.

4.1.1 Contributions

This work makes the following contributions:

1. A general framework for robust barycenters of persistence diagrams: By adapting a
recent approach [181] from probability measures to persistence diagrams, we show
how barycenter diagrams can be reliably estimated, generic Wq distances (Sec. 4.3),
despite outliers (Sec. 4.4).

2. An application to clustering: We present an application to clustering (Sec. 4.4.1),
where our work yields an improved robustness to the outlier diagrams that are
naturally present in ensembles used previously in the literature.

3. An application to Wasserstein dictionary encoding: We present an application to
dictionary encoding (Sec. 4.4.2), where the added robustness of our generalized
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barycenters is demonstrated over standard barycenters.

4. Implementation: We provide a Python implementation of our work that can be
used for reproducibility purposes.

4.2 Preliminaries

This section presents the required theoretical foundations to our work.

4.2.1 Small reminder on the Wasserstein distance and barycenter

and motivation

Recall that for two persistence diagrams X and Y , the q-Wasserstein distance Wq is
defined as:

Wq(X, Y ) = min
ϕ:X→Y

(

K
∑

ℓ=1

cq
(

xℓ, ϕ(xℓ)
)

)1/q

, (4.1)

where ϕ : X → Y is a bijection between X and Y . The transportation cost cq, based on
powered distances, is such that cq(x, y) = ∥x−y∥q2 if x /∈ ∆ or y /∈ ∆, and 0 otherwise. An
optimal bijection ϕ∗ minimizing Eq. 4.1 is called an optimal transport plan. In practice,
q is often set to 2, yielding the Wasserstein distance, noted W2. As in Sec. 2.3.3.3,
a Wasserstein Wq barycenter of persistence diagrams X1, . . . , Xm [187], is defined by
minimizing the Fréchet energy:

argmin
B

m
∑

i=1

λiW
q
q (B,Xi), (4.2)

where λi ≥ 0 and
∑

i λi = 1. Practical algorithms have been proposed for the computation
of Wasserstein barycenters [187, 191], but only for the specific case where q = 2. When
q = 2, a solution B∗ of Eq. 4.2 has the following property: a point x ∈ B∗ is an arithmetic
mean ofm points each inX1, . . . , Xm, which considerably eases the optimization of Eq. 4.2.
Fig. 4.1 (center) presents an example of a W2 barycenter. A barycenter computed using
the W2 distance emulates the behavior of a mean of an ensemble of scalars. As such, it
is prone to the influence of outliers. This motivates the use of a more general framework
for computing robust barycenters, as detailed in Sec. 4.3.

4.3 Robust barycenter

This section presents a general framework for computing barycenters of persistence dia-
grams using Wq distances, for arbitrary q values such that q > 1.

4.3.1 Optimization

The optimization of Eq. 4.2 can be addressed by an iterative algorithm Alg. 3, where
each iteration involves two steps. First, an assignment step computes the optimal as-
signment given the Wq metric between each input diagram and the current barycenter
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Figure 4.1: Comparison of barycenters computed with different values of q. On the left
we have terrain views of four scalar fields colored in blue, gray, yellow and green, the
latter being an outlier (featuring more peaks). The corresponding persistence diagrams
are represented with matching colors and the barycenters are represented in cyan. The
barycenter with q = 2 (center) is more sensitive to the presence of the green outlier, with
two cyan bars of medium persistence, due to the outlier peaks in the green dataset. For
q = 1.5 (right), the persistence of these two bars is significantly reduced, and so will be
their importance in distance computations.

estimation. Second, in the update step, the Fréchet energy is minimized by computing, for
each barycenter point, its ground barycenter in the birth/death plane. This is achieved by
updating each barycenter point to its optimal location, given the assignments computed
in the previous step.

For q = 2, the ground barycenter can be simply obtained by computing, for each
barycenter point, the arithmetic mean of its assigned points in the input diagrams [187,
191]. However, for q ̸= 2, such a simple update procedure cannot be considered. As
illustrated in Fig. 4.2, an update based on the arithmetic mean may increase the Fréchet
energy for q ̸= 2, hence potentially preventing Alg. 3 from converging toward a satisfying
result.

Instead, to generalize the computation of ground barycenters for q ̸= 2, we consider
the following function, representing the ground barycenter in the birth/death plane:

bq :











R2 × . . .× R2 → R2

(y1, . . . , ym) 7→ argmin
x

m
∑

i=1

λicq(x, yi)
. (4.3)

To optimize Eq. 4.3, as suggested by Tanguy et al. [181], we leverage a fixed-point op-
timization method Alg. 2, which we plug into Alg. 3 in the update step (ground barycenter
computation line). In practice we give a maximum number T of overall iterations. We
noticed that taking T < 10 is sufficient for convergence. Assumptions for achieving con-
vergence are discussed in the next section.
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Algorithm 2: Ground barycenter computation algorithm.

Input: Set of points in R2 {y1, . . . , ym}, barycentric weights λ1, . . . , λm, and
iteration number T .

Output : Ground barycenter b
(T )
q .

Initialization: b
(0)
q =

m
∑

i=1

λiyi.

for 0 ≤ t ≤ T − 1 do
z = 0
w = (0, . . . , 0)
for i ∈ {1, . . . ,m} do

di = ∥b(t)q − yi∥2−q
w = w + λi ∗ yi/di
z = z + λi/di

end

b
(t+1)
q = w/z

end

Algorithm 3: Barycenter computation algorithm.

Input: Set of persistence diagrams {X1, . . . , Xm}, barycentric weights
λ1, . . . , λm, and iteration number T .

Output : Wasserstein barycenter B(T ) = {x(T )1 , . . . , x
(T )
K }.

Initialization: B(0) = X1.
for 0 ≤ t ≤ T − 1 do

// 1. Assignment step
for i ∈ {1, . . . ,m} do

Compute ϕi ∈ argmin
ϕ:B(t)→Xi

K
∑

ℓ=1

cq
(

x
(t)
ℓ , ϕ(x

(t)
ℓ )
)

.

end

// 2. Update step
for ℓ ∈ {1, . . . , K} do

// Ground barycenter computation
Find x

(t+1)
ℓ = bq

(

ϕ1(x
(t)
ℓ ), . . . , ϕm(x

(t)
ℓ )
)

.

end

end

4.3.2 Convergence

Tanguy et al. prove, in the setup of probability measures, that their fixed-point method
for minimizing Eq. 4.3 converged under certain assumptions [181]. In this section, we
review these assumptions in the setup of persistence diagrams to argue the convergence
of our overall approach.

Assumption 4.1 : For all (y1, . . . , ym) ∈ R2 × . . . × R2, for all λ1, . . . , λm barycentric
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Figure 4.2: Simple example where computing the arithmetic mean instead of optimizing
bq increases the Fréchet energy (noted EF ) for q = 1. We have three simple persistence
diagrams, in dark blue, gray and yellow, each having a single point. For this problem,
the transport plans are fixed and the barycenter has only one point. On the left we
initialized the barycenter as the diagram encoded in green. In the middle, we have the
candidate of the barycenter encoded in cyan when computing an arithmetic mean after
one iteration. We can see that the Fréchet energy (for q = 1) increased. On the right, we
have a candidate for the barycenter encoded in purple when optimizing bq instead, this
time displaying a decrease of the Fréchet energy at one iteration.

coefficients, argmin
x

m
∑

i=1

λicq(x, yi) is reduced to a single element.

We prove that this assumption is satisfied in our case under some conditions.

Conditions 4.1 : Let y1, . . . , ym ∈ Rd and (λ1, . . . , λm) ∈ (0, 1)m such that
∑

i λi = 1.
Then for q ∈ (1,+∞), the function defined as:

Vq := x 7−→
m
∑

i=1

λi∥x− yi∥q2,

has a unique minimiser in Rd. If m ≥ 3 and there exists i1 < i2 < i3 ∈ {1, . . . ,m} such
that the points yi1 , yi2 and yi3 are not on a common affine line, then V1 also has a unique
minimiser.

Proof. — Step 1 : Case q > 1.
For q > 1 and a fixed y ∈ Rd, introduce the function hq := x 7−→ ∥x− y∥q2. We begin

by showing that hq is strictly convex. Take x1, x2 ∈ Rd and t ∈ (0, 1). We re-write:

hq(tx1 + (1− t)x2) = ∥t(x1 − y) + (1− t)(x2 − y)∥q2.
Introduce u := x1 − y and v := x2 − y. By convexity of ∥ · ∥2, we have ∥tu+ (1− t)v∥2 ≤
t∥u∥2 + (1− t)∥v∥2. We consider the equality and strict inequality cases separately.

1. If ∥tu+(1− t)v∥2 < t∥u∥2+(1− t)∥v∥2, we use consecutively the fact that a 7−→ aq

is increasing and convex on R+:

∥tu+ (1− t)v∥q2 < (t∥u∥2 + (1− t)∥v∥2)q
≤ t∥u∥q2 + (1− t)∥v∥q2.
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2. If ∥tu+(1− t)v∥2 = t∥u∥2+(1− t)∥v∥2, equality in the triangle inequality for ∥ · ∥2
yields that u and v are positively co-linear, leading to the two following alternatives:

(a) If v = 0 then we show the strict inequality as follows:

∥tu∥q2 = tq∥u∥q2 < t∥u∥q2,
where the inequality comes from the fact that q > 1 and t ∈ (0, 1), with
u ̸= 0 (indeed, if u = 0 then we have u = v = 0 yielding x1 = x2 which is a
contradiction).

(b) If v ̸= 0 then there exists α ≥ 0 such that u = αv. This implies that ∥u∥2 ̸=
∥v∥2: if equality held, then since α ≥ 0 we obtain α = 1, then u = v yields
x1 = x2 which is a contradiction. Since ∥u∥2 ̸= ∥v∥2, we can apply the strict
convexity of a 7−→ aq on R+, which shows:

∥tu+ (1− t)v∥q2 = (t∥u∥2 + (1− t)∥v∥2)q
< t∥u∥q2 + (1− t)∥v∥q2.

In all cases, we obtain the inequality:

hq(tx1 + (1− t)x2) < thq(x1) + (1− t)hq(x2),

showing strict convexity of hq. As a convex combination of strictly convex functions, Vq
is strictly convex. Since Vq is coercive, we conclude that it admits a unique minimiser.

— Step 2 : Case q = 1.
We now assume that m ≥ 3 and that there exists i1 < i2 < i3 ∈ {1, . . . ,m} such that

yj1 , yj2 and yi3 are not on a common affine line. We prove that V1 is strictly convex: let
x1 ̸= x2 ∈ Rd and t ∈ (0, 1), by the triangle inequality (similarly to the case q > 1):

V1
(

tx1 + (1− t)x2
)

≤
m
∑

i=1

λi
(

∥t(x1 − yi)∥2 + ∥(1− t)(x2 − yi)∥2
)

.

Our objective is to show that in this case, the inequality is strict. There is equality
if and only if for each i ∈ {1, . . . ,m}, x2 − yi = 0 or there exists αi ∈ R+ such that
x1 − yi = αi(x2 − yi). We now reason by contradiction and assume that equality holds.
We distinguish two cases concerning the points (yik)

3
k=1 from the assumption.

1. If there exists k ∈ {1, 2, 3} such that x2 − yik = 0, without any loss of generality we
take yi1 = x2, then yi1 = x2, furthermore the assumption on (yik)

3
k=1 implies that:

∀i ∈ {i2, i3}, x2 − yi ̸= 0.

Using these properties, we deduce from the equality in the triangle inequality that
there exists αik ≥ 0 such that x1 − yik = αik(x2 − yik) for k ∈ {2, 3}. Note that the
αik ̸= 1, otherwise x1 − yik = x2 − yik which is impossible since x1 ̸= x2. We can
now re-rewrite the equality as

yik = x1 +
αik

1− αik
(x1 − x2),

concluding that yi2 , yi3 and x2 are on the common affine line x1+R(x1−x2), which
is a contradiction as x2 = yi1 . We conclude that the equality cannot hold in the
triangle inequality in this case.
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2. If ∀k ∈ {1, 2, 3}, x2 − yik ̸= 0, then the triangle equality condition provides the
existence of αik ≥ 0 such that x1 − yik = αjk(x2 − yik). Again αik ̸= 1 for the same
reasons discussed above. Similarly we re-write the equality as:

yik = x1 +
αik

1− αik
(x1 − x2),

concluding that the three points (yik)
3
k=1 are on the common affine line x1+R(x1−x2)

which is a contradiction, hence equality cannot hold in the triangle inequality.

In both cases, we have proven that equality in the triangle inequality cannot happen,
yielding:

V1
(

tx+ (1− t)x2
)

< tV1(x) + (1− t)V1(x2),

which shows the strict convexity of V1. Since V1 is coercive, we can conclude that it admits
a unique minimiser.

Remark 4.1 : When q = 1 it is crucial that at least three points are not on a common
affine line. For instance if we have only two points, and take λ1 = λ2 = 1/2, then
argminx ∥x− y1∥2 + ∥x− y2∥2 = {ty1 + (1− t)y2 | t ∈ [0, 1]}.

Notice that when q = 1, this assumption does not hold in general. (due to the presence
of collinear points, in particular on the diagonal). In practice, this may lead to numerical
instabilities when considering q = 1, especially when ground barycenters are not unique.

Under those assumptions, and denoting the Fréchet energy EF (B) =
m
∑

i=1

λiW
q
q (B,Xi),

Tanguy et al. [181] show that for two consecutive iterates B(t) and B(t+1), we have
EF (B

(t)) ≥ EF (B
(t+1)). This means that fixed-point iterations (B(t)) decrease the en-

ergy optimized in Eq. 4.2.

For q ∈ [1, 2[, a resulting fixed point is a barycenter that is more robust to the pres-
ence of an outlier, in the initial set X1, . . . , Xm, compared to a W2 barycenter. Fig. 4.1
illustrates this difference when computing a barycenter with an outlier.

4.4 Results

This section presents two applications of our robust barycenters (Sec. 4.3) along
with detailed experiments. The experimental results are obtained on a computer with
a NVIDIA Geforce RTX 2060 (Mobile Q) with 6 GB of dedicated VRAM. Our meth-
ods were implemented on Python, using Pytorch for computations on the GPU. We ran
some experiments on two public ensembles [148] described in [149]. One is an acquired
2D ensemble and the other is a simulated 3D ensemble, both selected from past SciVis
contests [133]. For the experiments, only the persistence pairs containing maxima were
considered.
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Figure 4.3: Comparison of clustering results on an ensemble of diagrams of Gaussian
mixtures. On the left we have the 3 clusters: one cluster of 2 Gaussians (top), one
cluster of 3 Gaussians (middle) and one cluster of 4 Gaussians (bottom). In the first and
second clusters, we inserted an outlier (highlighted in green and cyan respectively) by
setting one isolated pixel to an arbitrarily high value. Those pixels result in persistent
pairs in the corresponding diagrams. On top we have the distance matrices of Wq for
q ∈ {2, 1.8, 1.6, 1.4, 1.2, 1}. In the distance matrices, the clustering results are shown with
dashed squares (clusters are colored in dark purple, purple and pale purple) while the
outlier diagrams are indicated with a plain square (green and cyan). In the three frames;
we visualize the evolution of each cluster and their barycenters for each q. Each frame
corresponds to a cluster (top: cluster 1, middle: cluster 2, bottom: cluster 3). The outlier
diagrams are colored in green and cyan. The barycenters are shown in opaque while
the diagrams of each cluster are shown in transparent. We observe that for q ∈ {2, 1.8}
the green outlier is incorrectly assigned to the second cluster (as it exhibits the same
number of persistence pairs, 3, as the entries of cluster 2). Similarly, given its number of
persistence pairs, the cyan outlier is incorrectly assigned to the third cluster until q = 1.6.
Beyond this value, the effect of the extra feature in these outlier diagrams is decreased,
enabling their correct clustering.

4.4.1 Clustering on the persistence diagram metric space

The first natural application of our robust barycenters consists in using them for the
problem of clustering an ensemble of persistence diagrams X1, . . . , XN . In particular,
clustering methods on ensembles of persistence diagrams group together subset of mem-
bers that have similar topological structures, highlighting trends of topological features
in the ensemble.

For this, we consider the classic clustering method, the k-means algorithm. This
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is an iterative algorithm alternating between two phases: computing k barycenters and
labeling the elements into k clusters. At first, k cluster barycenters Bj with j ∈ {1, . . . , k}
are initialized as k diagrams in the initial input set X1, . . . , XN , typically using the k-
means++ method [42]. Then, the labeling phase consists in assigning each diagrams Xn

to the closest barycenter Bj by using the Wq distance. After the labeling phase, the
barycenters are updated by computing new barycenters based on the new k clusters using
Alg. 3. The algorithm stops when reaching a maximum number of iterations or when
converging (i.e., when the labels do not change anymore). However, when using W2 as a
distance, the presence of an outlier in an ensemble of persistence diagrams can incorrectly
influence the barycenters in the k-means algorithm, and as a consequence the output
labels of the clustering.

We leverage the robustness of the Wq barycenters for clustering problems when there
are outliers in the ensemble to be clustered. We show a case in Fig. 4.3 where we artificially
injected outlier pixels in an ensemble of synthetic scalar fields (a common degradation in
real-life noisy data). This results in outlier diagrams in the input ensemble. We illustrate
the clustering results with different q ∈ {2, 1.8, 1.6, 1.4, 1.2, 1}. This experiment shows
that for q lower than 1.6, the resulting clustering put together the outliers into the correct
groups, while for q = 2 the outliers are incorrectly clustered. This can also be seen in
Fig. 4.4 where an outlier is naturally present in the ensemble of scalar fields. In this
example, our generic barycenters enable the computation of the correct clustering, as off
q = 1.6. Moreover, as illustrated on the right of Fig. 4.4 for the last cluster, our generic
barycenters are more representative, visually, of the input diagrams as the importance of
outlier persistence pairs is decreased in our framework.

4.4.2 Wasserstein dictionary encoding of persistence diagrams

Another application consists in using our robust barycenters as a core procedure for
dictionary based encodings of ensembles of persistence diagrams [173]. Let X1, . . . , XN

be an ensemble of persistence diagrams. A Wasserstein dictionary encoding aims at
optimizing a set of persistence diagrams D∗ = {a∗1, . . . , a∗m} (called dictionary) and N
vectors of barycentric coefficients Λ∗ = {λ∗

1, . . . ,λ
∗
N} (i.e., N vectors of size m, with

positive elements summing to 1) by solving:

argmin
D,Λ

N
∑

ℓ=1

W 2
2

(

B2(D,λℓ), Xℓ

)

, (4.4)

where B2(D,λℓ) denotes a W2 barycenter of D under barycentric coefficients λl. Infor-
mally, this framework works as a lossy compression for persistence diagrams. The goal
is to optimize a smaller set of persistence diagrams (m ≪ N) and N vectors of barycen-
tric weights such that the N Wasserstein barycenters defined by the barycentric weights
are good approximations of the N input diagrams. This results in an encoding of much
smaller size as only the dictionary and the N barycentric weights need to be stored to disk.
This framework has two main applications: data reduction and dimensionality reduction.
Naturally this framework can be extended to other Wasserstein distances. Then, Eq. 4.4
becomes:

argmin
D,Λ

N
∑

l=1

W q
q

(

Bq(D,λl), Xl

)

, (4.5)
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Figure 4.4: Visual comparison of distance matrices using Wq for q ∈ {2, 1.8, 1.6, 1.4, 1.2, 1}
on the Volcanic Eruption ensemble and the clustering results. Distance matrices are
represented similarly to Fig. 4.3. This ensemble of 12 persistence diagrams has a natural
outlier highlighted in cyan on the distance matrices. On the top, we can see that for
q ∈ {2, 1.8}, the k-means algorithm keeps the outlier alone, groups the 8 first diagrams
together and groups the last three together. Then starting from 1.6 to 1.2, the correct
clusters are returned. But for q = 1, We observe that the clusters are not discriminated
enough. On the bottom we have one representative scalar field for each cluster, and on
the bottom left the corresponding diagrams, the cyan scalar field and diagram being the
outlier. On the right, we have a visual comparison of two barycenters of the last cluster
of four diagrams (represented on the bottom right of the square). The pink one encodes a
W2 barycenter, while the green one encodes a W1.2 barycenter. We observe the influence
of the outlier in the pink barycenter, as the two global pairs are higher than the green ones
testifying the difference of scaling between the outlier (cyan) and the tree other diagrams
in the cluster. Also, we notice the presence of an isolated pair above the diagonal that is
generated by the isolated persistent pair in the outlier diagram.

where Bq(D,λl) denotes a Wq barycenter returned by Alg. 3. For q = 2, in Chapt. 3 we
introduced the analytic expression of the gradient ∇B2(D,λl) with respect to a1, . . . , am
and λl, enabling a simple gradient descent scheme for the optimization of Eq. 4.5. How-
ever, for q ̸= 2, since ground barycenters are no longer obtained as arithmetic means, but
by an interative, fixed-point method (Sec. 4.3.2), the gradient of the energy associated
with Eq. 4.5 cannot be derived analytically. Instead, we rely on automatic differen-
tiation (implemented in PyTorch) and use Adam [98] to optimize both the dictionary
D = {a1, . . . , am} and the vectors of barycentric coefficients Λ = {λ1, . . . ,λN}.

This extension results in a Wasserstein dictionary method that is more stable to the
presence of outliers in the original input ensemble. Moreover, this extension lets us im-
prove the initialization method for the dictionary. At first, the dictionary was chosen as
the m elements that are the farthest to each other in the initial set [173]. But extending
Eq. 4.4 to Eq. 4.5 allowed the dictionary to be initialized as barycenters issued from a
k-means algorithm with k = m. From our experience, this initialization results in a better
optimized energy (Eq. 4.5) and stability to the presence of outliers compared to the initial
one [173]. We showcase this extension by applying a Wasserstein dictionary method using
Wq. Fig. 4.5 shows a comparison of 2D planar layout of the barycenters, generated by the
dictionaries and vectors optimized with Eq. 4.4 and Eq. 4.5, on the Isabel ensemble where
we removed some entries to artificially inject an outlier (see the caption of Fig. 4.5 for
more details). Specifically, this 2D planar layout is a direct application of the dictionary
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Figure 4.5: Visual comparison of 2D planar layouts (on the right) of Wasserstein barycen-
ters after solving Eq. 4.4 and Eq. 4.5 when taking a dictionary with 3 diagrams. The
initial ensemble Isabel is composed of 12 diagrams divided in 3 classes of 4 diagrams
each. We removed 2 diagrams from the first and second classes, yielding an imbalanced
ensemble (in terms of class size) of 8 diagrams. We show representative scalar field for
each cluster, along with their diagram. The clusters are colored in dark purple, purple
and cyan respectively. In the planar layouts, the points, representing the barycenters,
are colored by their ground truth classification. For q = 2, the barycenter approximating
an element of the first cluster (dark purple) is misplaced (i.e., located near the second
cluster, purple). For q = 1.5, this same barycenter is correctly placed, thus yielding a
planar projection that is more faithful to the ground-truth classification.

encoding when the dictionary has three atoms in it. After optimizing the dictionary, with
the three Wasserstein distances between them, the cosine law can be used to form a tri-
angle in R2. Then we use the vectors λ1, . . . ,λm as vectors of barycentric coordinates in
R2. This experiment shows that this extension is more stable to the presence of outliers,
resulting in planar projections that are more faithful to the ground truth classification.

4.4.3 Computation time comparison

Table 4.1: Running times (in seconds) for computing a W2 barycenter.

Method m = 4 m = 6
Arithmetic
Mean

1.9 24.9

b2 6.3 29.0

In this section, we compare the time needed to compute a barycenter, with regard
to the W2 metric, using the arithmetic mean between points of R2, and the time when
optimizing b2. Our experiment consists in computing a barycenter of persistence diagrams
for the Isabel ensemble (Sec. 4.2.1), where each diagram is thresholded by persistence to
feature only ∼ 100 pairs and where T is set to 5. We report the resulting running
times in Tab. 4.1. When considering m = 4 input diagrams, the computation based on
the arithmetic mean is 3 times faster than the one based on b2. However, for a larger
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ensemble (m = 6), the difference is reduced to 4 seconds, yielding compatible run times
between the two approaches.

4.5 Summary

In this chapter, we showcased the utility of a method for computing a robust Wasser-
stein barycenters of persistence diagrams. Specifically, we adapted a recent fixed-point
method algorithm [181] to the case of persistence diagrams. We first gave a reminder
on this fixed point framework to compute this robust barycenter. We also gave a formal
proof of the necessary hypothesis for the convergence of this method. Then we presented
two applications of this robust barycenter to clustering and dictionary encoding of per-
sistence diagrams in the presence of outliers. We believe that our work on the robustness
of Wasserstein barycenters is a useful step toward improving their applicability in the
analysis of real-life ensembles of persistence diagrams.
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Chapter 5

A User’s Guide to Sampling Strategies

for Sliced Optimal Transport

This chapter serves as a user’s guide to sampling strategies for sliced optimal transport
[28,159]. We provide reminders and additional regularity results on the Sliced Wasserstein
distance. We detail the construction methods, generation time complexity, theoretical
guarantees, and conditions for each strategy. Additionally, we provide insights into their
suitability for sliced optimal transport in theory. Extensive experiments on both simulated
and real-world data offer a representative comparison of the strategies, culminating in
practical recommendations for their best usage.

The work presented in this chapter has been published in the journal Transaction on
Machine Learning Research 2025 [174]. The python code used can be found at https:

//github.com/Keanu-Sisouk/SW-Sampling-Guide.
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5.1 Context

The computational demands of the Wasserstein distance are, quite high, since evaluat-
ing the distance between two discrete distributions of N samples with traditional linear
programming methods incurs a runtime complexity of O(N3 logN) [142]. This computa-
tional burden has motivated the development of alternative metrics sharing some of the
desirable properties of the Wasserstein distance but with reduced complexity.

The Sliced Wasserstein (SW) distance [28,159], defined by slicing the Wasserstein dis-
tance along all possible directions on the hypersphere, is one of these efficient alternatives.
Indeed, the SW distance maintains the core properties of the Wasserstein distance but
with reduced computational overhead. For compactly supported measures, Bonnotte [29]
showed for instance that the two distances are equivalent. Again, it has been success-
fully applied in various domains, such as domain adaptation [108], texture synthesis and
style transfer [61,89], generative modeling [53,196], regularizing autoencoders [100], shape
matching [106], and has even been adapted on Riemaniann manifolds [26].

The SW distance between two measures µ and ν can be written as the expectation
of the one dimensional Wasserstein distance between the projections of µ and ν on a line
whose direction is drawn uniformly on the hypersphere. It benefits from the simplicity of
the Wasserstein distance computation in one dimension. In practice, computing the expec-
tation on the hypersphere is unfeasible, so it is estimated thanks to numerical integration.
The most common method for approximating the SW distance is to rely on Monte Carlo
approximation, by sampling M random directions uniformly on the hypersphere and ap-
proximating the integral by an average on these directions. Since the Wasserstein distance
in 1D between two measures of N samples can be computed in O(N logN), computing
this empirical version of Sliced Wasserstein has a runtime complexity of O(MN logN).
This complexity makes it a compelling alternative to the Wasserstein distance, especially
when the number N of samples is high.

As a Monte Carlo approximation, the law of large numbers ensures that this empirical
Sliced Wasserstein distance converges to the true expectation, with a convergence rate of
O( 1√

M
). This convergence speed is slow but independent of the space dimension. However,

it is important to keep in mind that to preserve some of the properties of the SW distance,
the number M of directions should increase with the dimension. For instance, it has been
shown that for the empirical distance to almost surely separate discrete distributions (in
the sense that if the distance between two distributions is zero then the two distributions
are almost surely equal), the number of directions M must be chosen strictly larger than
the space dimension [182].

Classical Monte Carlo with independent samples is not always optimal, since indepen-
dent random samples do not cover the space efficiently, creating clusters of points and
leaving holes between these clusters. In very low dimension, quadrature rules provide effi-
cient alternative methods to classical Monte Carlo. On the circle for instance, the simplest
solution is to replace theM random samples by the roots of unity {ei 2kπM | 0 ≤ k ≤M−1}:
since the function that we wish to integrate is Lipschitz, this ensures that the integral ap-
proximation converges at speed O( 1

M
). However, such quadrature rules are unsuitable for

high-dimensional problems, as they require an exponential number of samples to achieve
a given level of accuracy.

Another alternative sampling strategy is to rely on quasi-Monte Carlo (Q.M.C.) meth-
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ods, which use deterministic, low-discrepancy sequences instead of independent random
samples. Traditional Q.M.C. methods are designed for integration over the unit hyper-
cube [0, 1]d. The quality of a Q.M.C. sequence is often measured by its discrepancy, which
measures how uniformly the points cover the space. A lower discrepancy correlates with
a better approximation, according to the Koksma-Hlawka inequality [30]. Examples of
low-discrepancy sequences for the unit cube include for instance the Halton sequence [83],
and the Sobol sequence [175], and different approaches have been investigated to project
such sequences on the hypersphere. While quadrature rules are recommended for very
small dimensions (d = 1 or 2 for instance), Q.M.C. integration is particularly effective in
low to intermediate dimensions. A variant of low-discrepancy sequence is one where ran-
domness is injected in the sequence while preserving its "low discrepancy" property. Such
a sequence is called a randomized low-discrepancy sequence, and this is the foundation to
randomized quasi-Monte Carlo (R.Q.M.C.) methods [137]. Q.M.C. methods do not only
rely on low-discrepancy sequences, but can also use point sets of a given size directly op-
timized to have low-discrepancy, such as s-Riesz point configurations on the sphere [82].
However Q.M.C. and R.Q.M.C. methods on the sphere have a strong practical downside:
they suffer from the curse of dimensionality. Indeed the higher the dimension the harder
it is to generate samples with Q.M.C. and R.Q.M.C. approaches. Moreover, the higher
the dimension, the slower the convergence rate, and the more regular the integrand needs
to be to ensure fast convergence. The recent paper [127] already proposes an interest-
ing comparison of such Q.M.C. methods to approximate the Sliced-Wasserstein distance
in dimension 3, showing that such methods could provide better approximations that
conventional M.C. in this specific dimensional setting.

All the sampling strategies mentioned above are designed to provide a good cover-
age of the space. However, they do not take into account the specific structure of the
integrand, which is the Wasserstein distance between the one dimensional projections of
the two measures µ and ν. More involved methods to improve Monte Carlo efficiency
include importance sampling, control variates or stratification [13]. Such variance re-
duction techniques strategies can also be used in conjunction with quasi-Monte Carlo
integration. Control variates have been explored for Sliced Wasserstein approximation
in [128] and [109], showing interesting improvements in intermediate dimensions over
classical Monte Carlo.

The goal of this survey is to provide a detailed comparison of these different sampling
strategies for the computation of Sliced-Wasserstein in various dimensional settings. It is
intended as a user-guide to help practitioners choose the appropriate sampling strategy
for their specific problem, depending on the size and dimension of their data, and the type
of experiments to be carried out (whether or not they need to compute numerous SW
distances for instance). We will also look at the particularities of the different approaches,
some being more appropriate than others depending on whether a given level of accuracy
is desired (in which case an approach allowing sequential sampling is preferable to one
requiring optimization of a point set) or, on the contrary, a given computation time is
imposed. We will mainly focus on sampling strategies which are independent of the
knowledge of the measures µ and ν, such as uniform random sampling [13], orthonormal
sampling [162], low-discrepancy sequences mapped on the sphere [83, 175], randomized
low-discrepancy sequences mapped on the spheres [137], Fibonacci point sets [85] and
Riesz configuration point sets [82].
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For the sake of completeness, we also include in our comparison the recent approach [109],
which appears to be the most efficient among recent control variates approaches proposed
to approximate Sliced Wasserstein.

The chapter is organized as follows. Sec. 5.2 introduces some reminders on the Sliced
Wasserstein distance such as its definition and some regularity properties. Sec. 5.3 ex-
plores all the sampling methods considered in this work, hightlighting their theoretical
guarantees, the conditions under which they can be used, and identifying which methods
suffer from the curse of dimensionality. Sec. 5.4 provides a comparison of each sampling
method’s experimental results on different datasets. Then in Sec. 5.5, we detail how we
can use the Sliced Wasserstein distance for our dictionary framework. Finally, in Sec. 5.6
we offer detailed recommendations for choosing and using these sampling methods effec-
tively in practice.

5.2 Reminders on the Sliced Wasserstein Distance

5.2.1 Definition

In the following, we write ⟨· | ·⟩ the Euclidean inner product in Rd, ∥ ·∥ the induced norm,
Sd−1 = {x ∈ Rd | ∥x∥ = 1} the unit sphere of Rd. For θ ∈ Sd−1, we write πθ : R

d → R the
map x 7→ ⟨θ|x⟩, sd−1 the uniform measure over Sd−1. We also denote # the push-forward
operation 1.

For two probability measures µ and ν supported in Rd and with finite moments of
order 2, the Sliced Wasserstein Distance between µ and ν is defined as

SW 2
2 (µ, ν) = Eθ∼U(Sd−1)[W

2
2 (πθ#µ, πθ#ν)] =

∫

Sd−1

W 2
2 (πθ#µ, πθ#ν)dsd−1(θ). (5.1)

This distance, introduced in [159], has been thoroughly studied and used as a dissim-
ilarity measure between probability distributions in machine learning [28, 100, 125], and
more generally as an alternative to the Wasserstein distance. Its simplicity stems from
the fact that the Wasserstein distance between two probability measures in one dimension
has an explicit formula. Recalling Eq. 2.8, for two probability measures ρ1 and ρ2 on the
line, the Wasserstein distance W2(ρ1, ρ2) can be written

W 2
2 (ρ1, ρ2) =

∫ 1

0

|F−1
1 (t)− F−1

2 (t)|2dt, (5.2)

where F1 and F2 are the cumulative distribution functions of ρ1 and ρ2, and F−1
1 and

F−1
2 are their respective generalized inverses (see [164] Proposition 2.17). For two one

dimensional discrete measures ρ1 =
1
K

K
∑

k=1

δxk and ρ2 =
1
K

K
∑

k=1

δyk , this distance becomes

W 2
2 (ρ1, ρ2) =

1

K

K
∑

k=1

|xσ(k) − yτ(k)|2, (5.3)

where σ and τ are permutations of J1, KK which respectively order the sets {x1, . . . , xK}
and {y1, . . . , yK} on the line.

1The push-forward of a measure µ on Rd by an application T : Rd → Rk is defined as a measure T#µ

on Rk such that for all Borel sets B ∈ B(Rk), T#µ(B) = µ(T−1(B)).
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(a) On the left, we can see the two discrete distributions µ (blue points) and ν (yellow points).
On the right, we have their projections πθ#µ (blue circles) and πθ#ν (yellow circles) along
the direction θ. One then takes the increasing ordering of πθ#µ and πθ#ν, to obtain the
corresponding matchings (green arrows) and computes the cost following Eq. 5.3.

(b) On the left, we have a plot of θ 7→ W 2
2 (πθ#µ, πθ#ν) in polar coordinates, with the dis-

tributions µ and ν from Fig. 5.1a (top). The grey lines represent the angles where θ 7→
W 2

2 (πθ#µ, πθ#ν) is not differentiable, the magenta line is the line of angle θ = π
4 and the

blue dot is a specific value of W 2
2 (πθ#µ, πθ#ν) with the same angle. On the right, we have a 1D

plot of θ 7→ W 2
2 (πθ#µ, πθ#ν), here the hashed area represents SW 2

2 (µ, ν) and again the vertical
grey lines represent the values where θ 7→ W 2

2 (πθ#µ, πθ#ν) is not differentiable.

Figure 5.1: On the first row, Fig. 5.1a illustrates the computation of W 2
2 (πθ#µ, πθ#ν) for

a fixed θ. On the second row, Fig. 5.1b gives a geometrical illustration of SW 2
2 (µ, ν) with

µ, ν taken as in Fig. 5.1a.

As a consequence, the Sliced Wasserstein distance between two discrete probability

measures µ = 1
K

K
∑

k=1

δxk and ν = 1
K

K
∑

k=1

δyk on Rd (i.e. with (xk)k=1,...,K , (yk)k=1,...,K ∈ Rd)
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can be rewritten:

SW 2
2 (µ, ν) =

1

K

K
∑

k=1

∫

Sd−1

(⟨xσθ(k) − yτθ(k), θ⟩)2dsd−1(θ) (5.4)

=
1

K

K
∑

k=1

∫

Sd−1

(⟨xk − yτθ◦σ−1
θ (k), θ⟩)2dsd−1(θ), (5.5)

where σθ and τθ denotes respectively permutations which order the one dimensional
point sets (⟨xk, θ⟩)k=1,...,N and (⟨yk, θ⟩)k=1,...,N . Fig. 5.1 illustrates the computation of
W 2

2 (πθ#µ, πθ#ν) for two discrete measures in two dimensions (Fig. 5.1a), and shows how
this quantity varies when θ spans [0, 2π] (Fig. 5.1b).
Since the permutations σθ and τθ depends on the direction θ, the integrals in Eq. 5.1
and Eq. 5.4 do not have closed forms. For this reason, practitioners rely on Monte Carlo
approximations of the form:

1

KM

K
∑

k=1

M
∑

j=1

(⟨xσθj (k) − yτθj (k), θj⟩)
2, (5.6)

where θ1, . . . , θM are i.i.d. and follow a uniform distribution on the sphere. Classically,
the convergence rate of such Monte Carlo estimations of SW is O( 1√

M
) [84]. In this

context, it is natural to question the optimality of sampling methods to approximate SW
efficiently in different scenarios.

5.2.2 Regularity results on θ 7→ W 2
2 (πθ#µ, πθ#ν)

The efficiency of sampling strategies used in numerical integration is highly dependent on
the regularity of the functions to be integrated. For this reason, in the following we give
some properties of the function (Fig. 5.1b):

f : θ 7→ W 2
2 (πθ#µ, πθ#ν) (5.7)

on the hypersphere Sd−1. We first look at classical regularity properties of f .

Proposition 5.1 : f is Lipschitz on Sd−1.

Proof. Let µ and ν be two probability measures with finite moments of order 2, and
θ1, θ2 ∈ Sd−1. The triangular inequality on W2 yields

|W2(πθ1#µ, πθ1#ν)−W,2(πθ2#µ, πθ2#ν)| ≤ W2(πθ1#µ, πθ2#µ) +W2(πθ1#ν, πθ2#ν).

Using Eq. 2.10, we also have

W 2
2 (πθ1#µ, πθ2#µ) = inf

X∼µ,Y∼µ
E
[

|⟨θ1, X⟩ − ⟨θ2, Y ⟩|2
]

≤ inf
X∼µ

E
[

|⟨θ1 − θ2, X⟩|2
]

≤ ∥θ1 − θ2∥2EX∼µ[∥X∥2].

We can show similarly that W 2
2 (πθ1#ν, πθ2#ν) ≤ ∥θ1 − θ2∥2EY∼ν [∥Y ∥2]. Thus
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|W2(πθ1#µ, πθ1#ν)−W2(πθ2#µ, πθ2#ν)|

≤ ∥θ1 − θ2∥
(

√

EX∼µ[∥X∥2] +
√

EY∼ν [∥Y ∥2]
)

.

Since f is Lipschitz continuous, it is differentiable almost everywhere. However the
previous result does not give us the set where f is non differentiable. In the following we
give a more complete proof when µ and ν are discrete following the notations introduced
in Sec. 5.2.1.

Proposition 5.2 : When µ and ν are finite discrete measures, f is piecewise C∞ (C∞
pw)

and Lipschitz on Sd−1.

Proof. For discrete measures µ = 1
K

K
∑

k=1

δxk and ν = 1
K

K
∑

k=1

δyk on Rd, f can be rewritten

as

f(θ) = min
σ∈ΣK

fσ(θ), where fσ(θ) =
K
∑

k=1

⟨xk − yσ(k)|θ⟩2, (5.8)

where ΣK is the set of permutations of J1, KK. We assume that the {xi} (resp. {yj}) are
all distinct. In the following, we study the regularity of f as a function of Rd and deduce
the regularity properties of its restriction f|Sd−1 . Observe that each fσ defines a quadratic
function on Rd and f , as a minimum of a finite number of such functions, is continuous
and also piecewise C∞ on Rd. Since f is continuous on Rd, its restriction to Sd−1 is also
continuous. To show that this restriction to Sd−1 is also in C∞

pw, it is enough to observe
that the set of points of Rd where f is not differentiable is included in the finite union
of hyperplanes

(

∪i,jSpan(xi − xj)
⊥)⋃ (∪k,lSpan(yk − yl)

⊥), since these hyperplanes are
the locations where the minimum in Eq. 5.8 jumps from a permutation σ to another one
(see Fig. 5.2 as an illustration of those hyperplanes). Each of these hyperplanes intersect
Sd−1 on a great circle, and we call U the sphere minus this finite union of great circles.
The open set U (which is dense in Sd−1) can be written as the union

⋃p
k=1 Vk of a finite

number of connected open sets Vl, such that on each Vl, the permutation σ which attains
the minimum in Eq. 5.8 is constant and unambiguous. We write this permutation σl. On
each Vl, f|Sd−1 = fσl , thus is C∞ on Vl and its derivative can be obtained as the projection
of ∇fσl on the hypersphere. For θ ∈ U , writing σθ the permutation which attains the
minimum in Eq. 5.8 for the direction θ, this derivative can be written

∇(d−1)f(θ) = 2

(

K
∑

k=1

(

⟨xk − yσθ(k)|θ⟩(xk − yσθ(k))− ⟨xk − yσθ(k)|θ⟩2θ
)

)

. (5.9)

Since these derivatives are upper bounded on the compact set Sd−1, it follows that f is
also Lipschitz on Sd−1.
In the case where several xi (or yj) are equal, several of the functions fσ coincide. For
instance, if x1 = x2, the values of σ(1) and σ(2) can be exchanged without modifying fσ.
By eliminating all the redundant functions, we can make the same reasoning as before
to show the same regularity results on f . In this case, all the pairs (xi, xj) with xi = xj
should be removed when constructing the set of great circles dividing the hypersphere.
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Figure 5.2: Illustration of the open subsets
⋃p
k=1 Vk and their intersection with the hyper-

planes
(

∪i,jSpan(xi − xj)
⊥)⋃ (∪k,lSpan(yk − yl)

⊥), in the specific case of two measures

made of two diracs µ =
1

2

2
∑

i=1

δxi with x1, x2 = (1, 0, 0)T , (0,−1, 0)T and ν =
1

2

2
∑

i=1

δyi

with y1, y2 = (0, 0, 1)T , (0, 0,−1)T . The hyperplanes divide the sphere into the colored
sections where σθ and τθ are constant.

The following proposition will also be useful in the next sections.

Proposition 5.3 : f ∈ H1(Sd−1), where, for α ∈ N, the Sobolev space Hα(Sd−1) is
defined as [87]

Hα(Sd−1) = {h ∈ L2(Sd−1) | ∂|j|h ∈ L2(Sd−1), 0 ≤ |j| ≤ α},

with j a multi-index and ∂|j| the partial mixed derivative of order |j| on Sd−1.

Proof. We have seen previously that f is continuous and piecewise C∞, piecewise quadratic
to be more precise. Thus its weak derivative is piecewise linear with discontinuities on a
finite union of hyperplanes, which is L2.

5.3 Reminders on sampling strategies on the sphere

and their theoretical guarantees

In this section, we present the different sampling methods for numerical integration on
Sd−1 considered in this work, before comparing them experimentally in Sec. 5.4. This part
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addresses three main types of sampling: random sampling, discrepancy-based sampling,
and a control variate approach. The first type includes the classical Monte Carlo (M.C.)
method ( [84], [110]) on the sphere and its variant called orthonormal sampling [162].
The second one relies on a concept called the discrepancy ( [110], [54]) of a point set,
which represents the number of points in a unit of volume, and can be divided into two
categories: low-discrepancy sequences (or digital nets) and point sets (or lattices). Among
the former category, we also investigate a method based on a spherical sliced-Wasserstein
type discrepancy [25]. The last type details a control variates method [110] using spherical
harmonics [122] for this purpose [109]. We will also determine which method, and under
which conditions, is theoretically suitable based on the regularity properties established
in Sec. 5.2.2. Tab. 5.1 presents a taxonomy of all the sampling methods explored in
this work. It details which method’s convergence rate result is independent from the
dimension (i.e. the dimension does not appear in the asymptotic rate), which one can
be computed independently (i.e. each sample can be generated independently from
the others), and which one can be computed and stored in advance.

Sampling types Dimension independence Independent computation Possible pre-computation
Random Sampling
Uniform Sampling x x x

Orthonormal Sampling x x x
Based on discrepancy

Riesz Point Set / Riesz Point Set Randomized x
Fibonacci Point Set / Fibonacci Point Set Randomized x

Sobol / Sobol Randomized mapped on Sd−1 x x
Halton / Halton Randomized on Sd−1 x x

Spherical Sliced Wasserstein Discrepancy x x
Control variates

Spherical Harmonics Control Variates

Table 5.1: Taxonomy of the three types of sampling methods investigated in this chapter.

Tab. 5.2 gives a summary of the convergence rate and computational complexity of

each sampling method explored in this chapter. In this table nM = o

(

M1/
(

2(d−1)
)

)

.

Sampling types Theoretical convergence rate Time complexity Space complexity
Random Sampling

Uniform Sampling O(1/
√
M) O(M) O(M)

Orthonormal Sampling None O(M) O(M)
Based on discrepancy

Riesz Point Set / Riesz Point Set Randomized 1/M on S1, Not applicable otherwise O(M2) O(M)
Fibonacci Point Set / Fibonacci Point Set Randomized Not applicable O(M) O(M)

Sobol / Sobol Randomized mapped on Sd−1 None O
(

M log2b(M)
)

O(M)
Halton / Halton Randomized on Sd−1 None O

(

M log2b(M)
)

O(M)
Spherical Sliced Wasserstein Discrepancy None O(M log(M)) O(M)

Control variates

Spherical Harmonics Control Variates O
(

1/(nM
√
M)
)

O(M) O(M)

Table 5.2: Convergence rate, time complexity and spacial complexity (w.r.t the sampling
number) summary of the sampling methods studied in this chapter.

5.3.1 Random samplings

We first explore classical strategies for randomly generating points on the sphere: uniform
sampling [84] and orthonormal sampling [162]. These strategies are the most commonly
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used for estimating SW 2
2 , and their convergence rates do not depend on the dimension of

the input measures.

5.3.1.1 Classical Monte Carlo

The classical Monte Carlo method uses uniform random sampling to generate the projec-
tion angles. For (θM)M∈N∗ i.i.d. samples of sd−1

2, we write the Monte Carlo Estimator

XM :=
1

M

M
∑

i=1

f(θi) with M ∈ N
∗. (5.10)

The law of large numbers ensures that XM converges a.s. to SW 2
2 (µ, ν) = Eθ∼sd−1

[f(θ)]
as M goes to infinity. Moreover, the rate of convergence for this unbiased estimator is
given by

√

V[XM ] =

√

V[X1]

M
=

σ√
M
, (5.11)

where σ2 = V[f(θ)] =

∫

Sd−1

f 2(θ)dsd−1(θ) − SW 4
2 (µ, ν) < +∞. This convergence rate

in Eq. 5.11 does not depend on the dimension of the input measures. In order to derive
confidence intervals for SW 2

2 (µ, ν), we can rely on the Central Limit Theorem [68] , which
states that √

M
[XM − SW 2

2 (µ, ν)]

σ

L−−−−−→
M→+∞

N (0, 1),

This allows us to compute confidence intervals for SW 2
2 (µ, ν) by using the quantiles of

the standard normal distribution. This means that for M large enough,

P

(

XM − SW 2
2 (µ, ν) ∈

[

−σq1−α/2√
M

,
σq1−α/2√

M

])

−−−−−→
M→+∞

1− α,

with α in [0, 1] and q1−α/2 the quantile of level 1 − α/2 of N (0, 1). One strategy for
choosing M is taking M such that

σq1−α/2√
M

≤ ε with ε ≥ 0 a chosen precision. The value

of σ being unknown, a possibility is to plug a consistent estimator of σ2, such as

σ̂2
M =

1

M

[

M
∑

i=1

f(θi)
2 −X2

M

]

.

[198] provides an alternative criteria for choosing M , however it is quite impractical as
it requires to compute the Wasserstein distance between µ and ν.

5.3.1.2 Orthonormal sampling

A variant of the uniform sampling covered in Sec. 5.3.1.1 was introduced by [162], which
presents a simple variant for the previous Monte Carlo estimator XM by sampling random
orthonormal bases. This method is inspired by variance reduction techniques known as

2In practice, to simulate a random variable θ ∼ sd−1, one takes a normal random variable Z ∼
N (0, Id) ̸= 0 and chooses θ = Z

∥Z∥ ∼ sd−1 [13].
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stratification [110]. Let O(d) be the orthogonal group in Rd. For (ΘP )P∈N∗ ∼ U
(

O(d)
)

, de-

noting θ1, . . . , θM all the columns of the matrices Θ1, . . . ,ΘK , we define YM =
1

M

M
∑

i=1

f(θi).

It is easy to show that each θi follows the uniform distribution on Sd−1 [162]. As a con-
sequence, the estimator YM is still unbiased. Although it is not possible to show that YM
has a smaller variance than XM in general, this estimator is most of the time more effi-
cient than XM in our experiments and shows an equivalent or better rate of convergence
in practice. This might be due to the fact that the diversity of the samples is increased
by the orthonormality constraint.

Remark 5.1 : Other fully random point processes on [0, 1]2 or S2 suitable for Monte Carlo
integration are studied in the literature. Among them, we can mention Determinantal
Point Process (DPP). Recent works, such as [64], have proposed DPP methods directly
on the sphere S2. Unfortunately, due to the lack of publicly available implementations,
we could not experiment efficiently with these methods.

5.3.2 Sampling strategies based on discrepancy

We examine in this section two different types of deterministic sampling based on discrep-
ancy: low-discrepancy sequences (digital nets) and low-discrepancy point sets (lattices).
They were developed to replace random sampling, expecting to have a better convergence
rate than the classical Monte Carlo method.

5.3.2.1 Low-discrepancy sequences

Quasi-random sequences, better known as low-discrepancy sequences (L.D.S.), are se-
quences mimicking the behavior of random sequences while being entirely deterministic.
To date, these sequences are only defined on the unit hypercube [0, 1]d. We introduce
below a first definition of discrepancy ( [110], [54]).

Definition 5.1 : The discrepancy of a set of points P = {u1, . . . , uM} in [0, 1]d is defined
as

DM(P ) = sup
I∈I

∣

∣

∣

∣

∣

|P ∩ I|
M

− λ⊗d(I)

∣

∣

∣

∣

∣

,

where |A| denotes the cardinal of a set A, λ⊗d is the d-dimensional Lebesgue measure and

I = {
d
∏

i=1

[ai, bi[ | 0 ≤ ai < bi ≤ 1}. The star-discrepancy D∗
M(P ) is defined the same way

with I∗ = {
d
∏

i=1

[0, bi[ | 0 ≤ bi ≤ 1}.

We can now provide a definition of a low-discrepancy sequence (L.D.S.).

Definition 5.2 : Let (um)m∈N∗ be a sequence in [0, 1]d. Denoting PM = {u1, . . . , uM} for
any M ∈ N∗, u is a L.D.S. if

D∗
M(PM) −−−−−→

M→+∞
0.
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Intuitively, a sequence is considered as a L.D.S. if the portion of points in the sequence
falling into an area I is closed to the measure of I.

The notion of discrepancy is important because it is related to the error made when
approximating an integral on the hypercube by its Monte Carlo approximation. This
relation is made explicit by the Koksma-Hlawka inequality ( [110]; [54]; [30]).

This inequality requires to introduce the notion of Hardy-Krause variation Vh of a
function h on [0, 1]d [8], which is out of the scope of this work, but can be broadly
understood as a measure of the oscillation of h on the unit cube [0, 1]d.

Proposition 5.4 (Koksma-Hlawka inequality) : Let h : [0, 1]d → R have bounded varia-
tion Vh on [0, 1]d in the sense of Hardy-Krause [8]. Then for {u1, . . . , uM} a point set in
[0, 1]d, we have

∣

∣

∣

∣

∣

1

M

M
∑

k=1

h(uk)−
∫

S

h(x)dλ⊗d(x)

∣

∣

∣

∣

∣

≤ VhD
∗
M(u1, . . . , uM). (5.12)

The proof of this inequality and basic results on discrepancy theory can be found in [103]
and [54]. Eq. 5.12 shows that the absolute error made by the Monte Carlo approximation
is upper bounded by a term depending only on h and the star discrepancy. Compared
to the Central Limit Theoreom, this inequality is not probabilistic and not asymptotic,
the bound being valid for every M ∈ N∗. An important limitation is the term Vh, which
is impractical to compute directly. When d = 1, this term is exactly the total variation
of h, but in general, it is only upper bounded by the total variation. In the case of
our function f involved in the estimation of SW , Vf < +∞ holds since f is Lipschitz
continuous. Another limitation of the previous bound is that the rate of convergence of
the star discrepancy D∗

M of a sequence is most of the time not explicit and difficult to
compute [136].

Nevertheless, this proposition ensures that if the rate of convergence of the star dis-
crepancy of a sequence is better than O( 1√

M
), for M large enough the approximation

of the quasi Monte Carlo approximation using this sequence will outperform the one of
classical Monte Carlo.

In the following, we present two L.D.S. defined on the unit square [0, 1]d, and see how
their star discrepancy decreases with M . We then focus on practical methods to map
these sequences from the hypercube to the hypersphere Sd−1.

5.3.2.1.1 Halton sequence

The Halton sequence (ui)i∈N ∈ (Rd)N [83] is a generalization of the von der Corput
sequence [188]. In the following, we write, for any integer i, cl(i) the coefficients from the
expansion of i in base b, and we define the radical-inverse function in base b as

ϕb(i) =
+∞
∑

l=0

cl(i)b
−l−1, ∀i ∈ N.

The Halton sequence in dimension d is then defined as

ui = (ϕb1(i), . . . , ϕbd(i))
T ,

where bi is chosen as the i-th prime number.
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5.3.2.1.2 Sobol sequence

This sequence uses the base b = 2. To generate the j-th coordinate of the i-th point
ui in a Sobol sequence [175], one needs a primitive polynomial of degree nj in Z/2Z[X],

Xnj + a1,jX
nj−1 + a2,jX

nj−2 + . . .+ anj−1,jX + 1.

This polynomial is used to define a sequence of positive integers (mk,j) by recurrence,
with +Z/2Z the inner law of Z/2Z:

mk,j = 2a1,jmk−1,j +Z/2Z 22a2,jmk−2,j +Z/2Z . . .+Z/2Z 2
njmk−nj ,j +Z/2Z mk−nj ,j.

The values mk,j, for 1 ≤ k ≤ nj, can be chosen arbitrarily provided that each one is odd
and less than 2k. Then one generates what is called direction numbers:

vk,j =
mk,j

2k
.

The j-th coordinate of ui is then obtained as

ui,j =
+∞
∑

k=1

ck(i)vk,j.

5.3.2.1.3 Convergence rate of Halton and Sobol sequences Both sequences
(Halton and Sobol) have a star discrepancy which converges to 0 (which means that they
are indeed L.D.S.). The convergence rate is given by the following property [130] [137].

Proposition 5.5 : Let (um)m∈N∗ be either the Halton sequence or Sobol sequence in
[0, 1]d. Then for M ≥ 1, we have

D∗
M(u1, . . . , uM) ≤ cd

log(M)d

M

where cd is a constant that depends only on the dimension.

Thanks to Eq. 5.12, for any function h such that Vh < +∞ (which is the case for
our function f), this implies a convergence rate of the Monte Carlo estimator using these

sequences in O( log(M)d

M
), which means O(M−1+ϵ) for every ϵ > 0. This convergence rate

is better than the one of classical Monte Carlo with i.i.d. sequences, even if the rate of
convergence slows down when the dimension increases, because of the term log(M)d.

Remark 5.2 : Note that L.D.S. are designed to mimic the behavior of a random uniform
sampling in [0, 1]d while being completely deterministic. This deterministic behavior leads
to patterns in the sampling; because of those patterns, the higher the dimension, the
harder it is for those to fill the "gaps" in [0, 1]d. Moreover, the term log(M)d implies that
one needs M to be very large (exponential) to get the same level of space coverage in high
dimension than in low dimension.

Remark 5.3 : Observe that both for Sobol and Halton sequences, generating M values
has a complexity in O

(

Mlog2b (M)
)

, where b is the base (or smallest basis for Halton)
chosen.
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5.3.2.1.4 L.D.S. on the sphere
To our knowledge, there is no true L.D.S. on the unit sphere Sd−1 for d ≥ 3, this question
remaining an active research area. Practitioners typically map L.D.S. from the hypercube
to the hypersphere, using one of the methods described below:

• Equal area mapping [7]: this method is only defined for mapping points in the
unit square to S2. Denoting (z1, z2) ∈ [0, 1[2, one gets a point u = Φ(2πz1, 1− 2z2)
on S2 with:

Φ(η, β) =
(

√

1− β2cos(η),
√

1− β2sin(η), β
)

, η, β ∈ [0, 1[. (5.13)

• Spherical coordinates [11]: This method maps the points from an L.D.S. in
[0, 1]d−1 to Sd−1 by using the spherical coordinates. Unfortunately, we found that the
resulting sampling is usually not competitive compared to other sampling methods.

• Normalization onto the sphere [18]: An L.D.S. is generated in the d-hypercube
[0, 1]d and mapped to Rd using the inverse cumulative distribution function of the
standard normal distribution (separately on each dimension). Then each point in
the resulting sequence is normalized by its norm to map it onto Sd−1.

Specific case of S2.
In the specific case of S2, it has been shown by [7] that if u is an L.D.S in [0, 1]2 and Φ the
equal area mapping defined in Eq. 5.13, the spherical cap discrepancy DL2,M

(

Φ(P )
)

(see
definition Def. 5.3 in the next section) of the mapped sequence is in O

(

1
M1/2

)

. However,

their experiments showed that the correct order seems rather to be O
(

logc(M)

M3/4

)

for 1/2 ≤
c ≤ 1.

5.3.2.2 Deterministic point sets on Sd−1

This section details different methods to design well distributed point sets on Sd−1. Con-
trary to the L.D.S. defined above, these point sets are defined directly on the sphere, in
order to be approximately uniformly distributed on Sd−1. To measure this uniformity, we
can rely on the notion of spherical cap on the sphere: a spherical cap of center c ∈ Sd−1

and t ∈ [−1, 1] is defined as

C(c, t) = {x ∈ S
d−1 | ⟨x, c⟩ > t}. (5.14)

In other words, a spherical cap is the intersection of a portion of the sphere and a
half-space (see Fig. 5.3 for an illustration).

To the best of our knowledge, there is no equivalent to the Koksma-Hlawka inequality
for the sphere in full generality [31]. A sequence of points {un} on Sd−1 is said asymptot-
ically uniformly distributed on Sd−1 if for every spherical cap C, the proportion of points
inside the cap, converges to the measure of the cap sd−1(C). It can be shown that this
assumption is equivalent to assume that for every continuous function h, the Monte Carlo
approximation 1

M

∑M
k=1 h(uk) converges to Eθ∼sd−1

[h(θ)].
In order to get a non asymptotic notion of the uniformity of a point set on Sd−1, we

can rely on different notions of spherical cap discrepancy on the sphere, defined as follows.
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Figure 5.3: Illustration of a spherical cap on S2. The circle represents the intersection
of the plane ⟨x, c⟩ = t with the sphere, and the purple colored area is the cap C(c, t) as
noted in Eq. 5.14.

Definition 5.3 : The spherical cap max-discrepancy of a point set PM of size M is
defined as [119]:

Dmax(PM) = sup
c∈Sd−1,t∈[−1,1]

{∣

∣

∣

∣

|PM ∩ C(c, t)|
M

− sd−1

(

C(c, t)
)

∣

∣

∣

∣

}

.

The spherical cap L2-discrepancy of a point set PM of size M is defined as [31]:

D2
L2
(PM) =

{

∫ 1

−1

∫

Sd−1

∣

∣

∣

∣

|PM ∩ C(c, t)|
M

− sd−1

(

C(c, t)
)

∣

∣

∣

∣

2

dsd−1(c)dt

}

,

where C(c, t) is a spherical cap of center c and height t.

Again, the idea is to compare the proportion of points in PM that fall inside a spherical
cap with the measure of the cap. This comparison is done for all possible caps on the
sphere, and Dmax represents the worst error over all possible caps, while D2

L2
represents

the average squared error over all possible caps.
When using Q.M.C. on the hypersphere to approximate the integral of functions h,

another notion often used in the literature is the worst-case (integration) error (W.C.E.)
on a Banach space of functions, which is the largest possible error made by the method
on the space. For instance, on Hα(Sd−1).

Definition 5.4 : For PM = {u1, . . . , uM}, for α ∈ N

WCE
(

PM , H
α(Sd−1)

)

= sup
h∈Hα(Sd−1)

∣

∣

∣

∣

1

M

M
∑

m=1

h(um)−
1

sd−1(Sd−1)

∫

Sd−1

h(w)dsd−1(w)

∣

∣

∣

∣

.
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Under some regularity condition, a sufficient and necessary one being α ≥ 1
2
+ d−1

2
for

Hα(Sd−1), [32] shows that optimizing the spherical cap L2-discrepancy is equivalent to
optimizing the W.C.E. thanks to the Stolarsky’s invariant principle [178]. In the case
of our function f , we have seen that f is regular enough in the specific case of S1, since
f ∈ Hα(S1) with α = 1 = 1

2
+ 1

2
. However in dimension larger than 3, this result does not

hold anymore since f does not belong to any Sobolev space Hα(Sd) with α > 1.

5.3.2.2.1 Fibonacci point set on S2

Denoting φ the polar angle and χ the azimuthal angle forming the geographical coor-
dinates (φ, χ), we retrieve the Cartesian coordinates (x, y, z) using the spherical coordi-

nates (see Fig. 5.4 for an illustration). Noting ϕ = 1+
√
5

2
the golden ratio, the m-th point

um = (φm, χm) of the Fibonacci point set is given by

φm = arccos

(

2m

2M + 1

)

,

χm = 2mπϕ−2.

It is a simple and efficient way, convergence rate wise, to generate points on S2 for the
quasi-Monte Carlo method but it is only defined on S2. The complexity of the generation
is linear in M , and according to [118], the corresponding convergence rate for the W.C.E.
and the L2-spherical cap discrepancy is in O( 1

M3/4 ). For an extensive list of other popular
point configurations on S2, see [85].

Figure 5.4: Illustration of the spherical coordinates in R3 for points on the sphere S2.

5.3.2.2.2 Equi-distributed points generated by the discrete s-Riesz energy

Another classical way to define equi-distributed point sets on the hypersphere is to
rely on optimization. In such methods, the point set PM is defined as the minimizer of a
certain energy functional Es,

P ∗
M := argmin

u1,...,uM∈Sd−1

Es(u1, . . . , uM).
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The most common energy functional is the s-Riesz energy, which is defined as follows.

Definition 5.5 : For s ≥ 0 and PM = {u1, . . . , uM} a set of points on Sd−1, the s-Riesz
energy of P is defined as

Es(PM) =



















∑

i ̸=j

1

∥ui − uj∥s
if s > 0,

∑

i ̸=j
log

1

∥ui − uj∥
if s = 0.

The resulting point set is called a minimal s-energy configuration. The s-Riesz energy
can also be defined for s < 0, in this case the point set PM is obtained as the maximizer

of Es =
∑

i ̸=j
∥ui−uj∥s [31]. Minimising Es is non trivial, the functional being not convex,

and the problem becomes more complex when the dimension increases. Minimal energy
configuration points for Es are called Fekete points and it is known that for 0 ≤ s < d,
these sets are asymptotically uniformly distributed with respect to the normalized surface
measure sd−1, which means that Monte Carlo estimates using the Fekete points converge
to the integral against sd−1 [119].

The spherical cap L2-discrepancy of a point configuration is minimal if and only if the
sum of distances in the configuration is maximal. This would correspond to maximizing a
s-Riesz energy for s = −1 [31]. However, the link between the configurations of minimal
s-Riesz energy and the max or L2 discrepancies of these configurations is in general not
straightforward, see [31], [119], [82]. For 0 ≤ s < d, and PM a minimizer of size M of the
Riesz s-energy on Sd−1, the authors of [119] show that

Dmax(PM) ≲ O
(

max
(

M− 2
d(d−s+1) ,M− 2(d−s)

d(d−s+4)

))

.

This implies that Dmax(PM) −−−−−→
M→+∞

0, but the speed of convergence degrades with the di-

mension d, which means that the uniformity of these configurations is likely to suffer from
the curse of dimensionality. Fig. 5.5 shows an example of s-Riesz points and Fibonacci
points on S2 with 500 points.

Remark 5.4 : Since computing Riesz point configurations involves optimization (with a
non linear complexity), the time needed to generate those points can be impractical. Note
that generally the generation of the s-Riesz configuration points has a runtime complexity
of O(TM2), where T is the number of iterations of the optimization loop.

In the specific case of S1, the Fekete points are unique up to a rotation, and are the
M -th unit roots (see [82] and see Fig. 5.6 for an illustration):

{

e
2ikπ
M | k = 0, . . . ,M − 1

}

.

This explains why for 2D discrete measures, a uniform grid on S1 gives better results than
any other sampling method for computing SW 2

2 , as we will see in Sec. 5.4.
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Figure 5.5: Illustration of s-Riesz points (on the left) and Fibonacci points (on the right)
on S2, with 500 points for both configurations.

Figure 5.6: Plot of the 10-th unity roots, i.e solutions to the equation z10 = 1.

5.3.2.3 Random Quasi Monte-Carlo

The principle of Randomized Quasi-Monte Carlo (R.Q.M.C.) methods is to reintroduce
stochasticty in Q.M.C. sequences. Indeed, Q.M.C. methods such as the ones described in
Sec. 5.3.2.1 and Sec. 5.3.2.2 are deterministic. For a given M , the estimator given by one
of these methods is always the same. As such, we cannot easily estimate the error or the
variance of the Monte Carlo approximation. Besides, while results such as the Koksma-
Hlawka inequality ensures that they converge at a certain rate, the different quantities
involved in the inequality are much more complex to estimate than the one involved in the
Central Limit Theorem. Random Quasi-Monte Carlo methods were especially designed
to recover this ability to estimate the error easily. These sequences are usually defined on
[0, 1]d.

Definition 5.6 ( [137]) : Let {ûi}i≥1 be a sequence of points in [0, 1]d. It is said to be
suitable for R.Q.M.C. if ∀i, ûi ∼ U([0, 1]d) and if there exist a finite c > 0 and K > 0
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such that for all M ≥ K,

P

[

D∗
M(P̂M) < c

logd(M)

M

]

= 1, where P̂M = {û1, . . . , ûM}.

Denoting XM =
1

M

M
∑

i=1

h(ûi) the empirical estimator of Eθ∼sd−1
[h(θ)], the assumption

ûi ∼ U([0, 1]d) implies that XM is unbiased. Besides, the previous inequality implies that

if {ûi}i≥1 is suitable for R.Q.M.C., then the variance of XM is bounded by c2V 2
h
log2d(M)
M2 .

For functions h such that Vh < ∞, this yields a convergence rate in O
(

logd(M)/M
)

,
similar to the one of low discrepancy sequences.

Once a randomization method is chosen (such that it provides suitable R.Q.M.C.
sequences), the process can be repeated several times to obtain K independent random

estimators X1
M , . . . X

K
M of Eθ∼sd−1

[h(θ)]. The agregated estimate XM,K =
1

K

K
∑

k=1

XK
M has

a variance decreasing in O
(

logd(M)/(MK−1/2)
)

. One of the key advantages of this
approach is that this variance (or confidence intervals) can be estimated by the empirical
variance of the K independent estimators.
There are several ways to generate sequences from low discrepancy sequences on [0, 1]d in
order to make them suitable for R.Q.M.C.. One of the most simple methods consists in
applying the same random shift U to all points in the sequence, and taking the result mod-
ulo 1 componentwise [110]. More involved methods, such as Digital shift or Scrambling,
are described in [110] and [137].

However, to the best of our knowledge, there is no proper R.L.D.S. on the sphere, as
stated by [127]. In practice, R.L.D.S. on the unit cube are mapped onto the sphere by
the methods described in paragraph 5.3.2.1.4. Another possibility, as done in [127], is to
generate a random rotation matrix and apply it directly on point configurations on Sd−1,
such as the ones described in Sec. 5.3.2.2.

5.3.3 Spherical Sliced Wasserstein

A sampling method based on a Sliced-Wasserstein type discrepancy on the sphere Sd−1

was developped by [25] for d ≥ 3. We denote Cd,2 the set of great circles of Sd−1, a great
circle being the intersection between a plane of dimension 2 and Sd−1 [94]. The authors
of [25] define a pseudo distance, called Spherical Sliced Wasserstein distance, between two
probability measures Θ,Ξ defined on Sd−1:

SSW 2
2 (Θ,Ξ) =

∫

Cd,2

W 2
2 (πC#Θ, πC#Ξ)dζ(C), (5.15)

where for all x ∈ Sd−1, πC(x) = argminy∈C dSd−1(x, y) with dSd−1(x, y) = arcos(⟨x, y⟩) [70]
and ζ is the uniform distribution over Cd,2.
As shown in [25], this distance can be used to sample points on Sd−1 by minimizing SSW2

between a discrete measure Θ = 1
M

M
∑

i=1

δθi and the uniform measure Ξ = sd−1 on Sd−1. To

this aim, for C1, . . . , CL L independent great circles, they approximate SSW 2
2 (Θ,Ξ) by its
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Monte Carlo approximation ZL(Θ,Ξ) =
1

L

L
∑

l=1

W 2
2 (πCl

#Θ, πCl
#Ξ). Then, they note that

πCl
#sd−1 = s1 [93] for each l, and derive a closed form for W 2

2 (πCl
#Θ, s1) based on [52].

The final distance SSW 2
2 (Θ,Ξ) can then be optimized with respect to the point positions

θi with a projected gradient descent.
Remark 5.5 : There are cases in which SSW is a metric:

• Based on [157], SSW is a metric between any two probability measures on S2.

• A result from [114] also shows that SSW is a metric between any two absolutely
continuous probability measures with continuous density functions on Sd−1 for d ≥ 3.

Remark 5.6 : Noting T the number of iterations for the gradient descent algorithm, and
L as above, then the time complexity of this method is in O(TLM log(M)).

Remark 5.7 : Notice that SSW ’s form is similar to the L2-spherical cap discrepancy,
where instead of averaging the "error" made by the sampling on a spherical cap, it averages
the "error" made by the sampling on a great circle.

5.3.4 Variance reduction

All methods described so far are based on the idea of generating points on the sphere in
such a way that these points are sufficiently well distributed to be used for Monte Carlo
integration, and ideally yield faster convergence than M.C. with i.i.d. sequences. These
point sequences or point sets are defined independently of the function to be integrated.

More involved approaches, such as importance sampling or control variates, use the
knowledge of the function to be integrated to improve Monte Carlo estimators by decreas-
ing their variance. Recently, two control variates based methods have been developped
to estimate the Sliced Wasserstein distance. A control variate is a centered random vec-
tor Y ∈ Rp, easy to sample, with finite second moments. Assume we want to estimate
Eθ∼sd−1

[f(θ)]. Writing θ1, . . . , θM i.i.d. samples of θ ∼ sd−1 and Y1, . . . , YM M independent
copies of the random centered vector Y , we consider the following estimator

1

M

M
∑

i=1

[f(θi)− βTYi],

where β ∈ Rp is a constant vector to be determined. The variance of this estimator is
proportional to Var(f(θ)−βTY ). It follows that if we write β∗ the parameter minimizing
this variance, then the pair (E(f(θ)), β∗) is solution of the least square problem

min
(ζ,β)∈R×Rp

E[(f(θ)− ζ − βTY )2].

An empirical version of this quadratic problem on a sample (θ1, . . . , θM) writes

(Ê(f(θ))M , βM) = argmin
ζ,β∈R×Rp

∥F − ζ1M − Yβ∥22 (5.16)

where F =
(

f(θi)
)T

i=1,...,M
, 1M = (1, . . . , 1)T ∈ RM , and Y =

(

Y T
i

)

i=1,...,M
∈ RM×p.
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Recently, [129] introduced a Sliced Wasserstein distance estimation using Gaussian
control variates and [109] developped a method using spherical harmonics control variates.
We focus only on [109] here, since their method yields much better experimental results. In
their work, [109] chose Spherical Harmonics [122] as control variates. Spherical harmonics
are functions which form an orthonormal basis (ϕi) of the Hilbert space L2(Sd−1, sd−1).
In this setting, the random variable Y is thus chosen as Y = (ϕi(θ))i=1,...,p, with θ ∼ sd−1.

In practice, the number p is chosen as p = Ln,d =
n
∑

l=1

N(d, 2l), the number of spherical

harmonics of even degree up to 2n, with N(d, n) = (2n + d − 2) (n+d−3)!
(d−2)!n!

the number of
spherical harmonics of degree n in dimension d.

[109] then computes the solution (SHCV 2
M,n, βM) of (5.16) on a sample (θ1, . . . , θM)

and uses the control variates estimator SHCV 2
M,n as estimator of the (squared) Sliced

Wasserstein distance. They prove the following convergence property.

Proposition 5.6 : Let µ, ν be two discrete measures in Rd with finite moments of order

2 and let d ≥ 2. For any sequence of degrees n = (nM)M such that nM = o

(

M1/
(

2(d−1)
)

)

as M −→ +∞, we have

∣

∣SHCV 2
M,n(µ, ν)− SW 2

2 (µ, ν)
∣

∣ = OP

(

1

nM1/2

)

, (5.17)

where the notation Xn = OP(an) means that the sequence Xn

an
is stochastically bounded 3.

Notice that since nM = o

(

M1/
(

2(d−1)
)

)

, in high dimensions d the global convergence

rate is similar to that of the classical Monte Carlo method described in Sec. 5.3.1.1.

5.4 Experimental results

This section presents experimental results from all the different sampling strategies pre-
sented in Sec. 5.3, on a variety of datasets. To provide representative results, we select
datasets spanning a range of dimensions going from 2 to 28 × 28. Those include a toy
dataset and three "real-life" ones. We first present results on Gaussian mixtures in the fol-
lowing dimensions {2, 3, 5, 10, 20, 50}, the six ground truths (true distances) are estimated
using 108 angles θ. Secondly, we show some dimensionality reduction results on 12 dif-
ferent datasets of persistence diagrams (for the case of 2 dimensional discrete measures).
Then we show some convergence results in the specific case of measures in 3 dimensions.
Specifically, we compare different estimations of the Sliced Wasserstein distance between
3D point clouds taken from the ShapeNetCore dataset, see [43]. Finally we compare differ-
ent dimensionality reduction results on the MNIST dataset [107]. For the experiments on
the Gaussian mixtures we compare the listed strategies with the following sampling num-
bers {100, 300, 500, 700, 900, 1100, 2100, 3100, 4100, 5100, 6100, 7100, 8100, 9100, 10100}.
Otherwise, we use the following sampling numbers {100, 1100, 2100, 3100, 4100, 5100,

3The notation Xn = OP(an) means that for all ϵ > 0, there exist finite K > 0 and N > 0 such that
P[|Xn| > Kan] < ϵ for all n > N .

103



Chapter 5. A User’s Guide to Sampling Strategies for Sliced Optimal Transport

6100, 7100, 8100, 9100, 10100}. Tab. 5.3 displays the acronyms of all the sampling methods
compared in the following experiments. For each sampling method from Tab. 5.3, there are
two variants finishing with the term "Area Mapped" and two variants finishing with the
term "Normalized Mapped". The first one means that we applied the equal area mapping
detailed in paragraph 5.3.2.1.4. The second one means we normalize each point generated
by those methods, this normalization method is also detailed in paragraph 5.3.2.1.4.

Name Legends Dimensions
Riesz Randomized R.R. 2,3,5,10,20,50
Uniform Sampling U.S. 2,3,5,10,20,50
Othornormal Sampling O.S. 2,3,5,10,20,50
Halton Area Mapped H.A.M. 2,3
Halton Randomized Area Mapped H.R.A.M. 3
Halton Normalized Mapped H.N.M. 5,10,20,50
Halton Randomized Normalized
Mapped

H.R.N.M 5,10,20,50

Fibonacci Point Set F.P.S. 3
Fibonacci Randomized Point Set F.R.P.S. 3
Sobol Area Mapped S.A.M. 3
Sobol Randomized Area Mapped S.R.A.M. 3
Sobol Normalized Mapped S.N.M. 5,10,20
Sobol Randomized Normalized
Mapped

S.R.A.M. 5,10,20

Spherical Harmonics Control Variates S.H.C.V. 3,5,10,20
Spherical Sliced Wasserstein Random-
ized

S.S.W.R. 3,5,10,20,50

Table 5.3: For each method used in this experimental part, associated acronym, and list
of dimensions where this method is used.

5.4.1 Implementation of the sampling methods

This section provides details on the implementations used for the sampling methods, and
specifies how the parameters are set. The implementations used are grouped and are avail-
able here https://anonymous.4open.science/r/SW-Sampling-Guide-C157/README.md.

• Classical M.C. methods: For both methods we used python included func-
tions to sample a Gaussian variable and to sample orthogonal matrices in d di-
mension. For sampling orthogonal matrices we use the following python library
scipy.stats.ortho_group https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.ortho_group.html.

• Halton & Sobol sequences: In dimension 3 and less, we use python implemen-
tations from the library scipy.stats.qmc (https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.qmc.Halton.html & https://docs.scipy.

org/doc/scipy/reference/generated/scipy.stats.qmc.Sobol.html. As for the
parameters we set "scramble" to True to get the randomized version. For high
dimensions, we use [109]’s implementation available here https://github.com/

RemiLELUC/SHCV.

Remark 5.8 : For the Sobol sequence, we noticed that the implementation pro-
vided by [109] cannot be used in dimension higher than 20.
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• Riesz point configuration: We use a code provided by François Clement (https:
//sites.math.washington.edu/~fclement/), implementing a projected gradient
descent method, where we choose the number of iterations as T = 10, the gradient
step as 1 and s = 0.1. The function can be found in the riesz_noblur.py script in the
repository https://anonymous.4open.science/r/SW-Sampling-Guide-C157/README.

md.

• Spherical Sliced Wasserstein: We used the following implementation from [25]
that can be found in POT library (Python Optimal Transport)
https://pythonot.github.io/auto_examples/backends/plot_ssw_unif_torch.

html. For the hyper-parameters we set the number of iteration T = 250, the learn-
ing rate ϵ = 150 and the number of great circles L = 500. For the initialization, we
generate θ1, . . . , θM ∼ sd−1 following the method described in Sec. 5.3.1.1.

• Spherical Harmonics Control Variates: We use the implementation provided
by [109], available in https://github.com/RemiLELUC/SHCV. They provide two
possible functions SHCV and SW_CV, both functions return a value of a SW esti-
mate. These functions differ in the way they implement the optimization of Eq. 5.16.
Depending on the number of control variates, one of the functions is much more ef-
ficient than the other. For this reason, in our experiments, we use both functions
and always keep only the minimal error among the two.

5.4.2 Gaussian data

This part details the experiments on a toy dataset chosen because it is simple to repli-
cate and simple to understand. We compare different estimates of SW 2

2 (µd, νd) for

d ∈ {2, 3, 5, 10, 20, 50}. We pick up [109]’s setting, using µd =
1
K

K
∑

i=1

δxi and νd =
1
K

K
∑

i=1

δyi

with x1, . . . , xK ∼ N (x,X), y1, . . . , yK ∼ N (y,Y), where K = 1000. The means are
drawn as x, y ∼ N (1d, Id) and the covariances are X, Y = ΣxΣ

T
x ,ΣyΣ

T
y where all entries

of the matrices are drawn using the standard normal distribution. In Fig. 5.7, we show
convergence curves generated by all the different sampling strategies in all the dimensions
listed above. For random samplings, those curves are obtained after averaging the abso-
lute error on a 100 runs. For deterministic sampling, those curves represent the absolute
error of the approximation compared to the ground truth. Fig. 5.8 reports the distance
estimation error as a function of computation time (in seconds). In both figures, both
axes are log scaled. We can see in Fig. 5.7 that up to dimension 5, Q.M.C. methods are
preferable convergence wise, then the orthonormal sampling is preferable in dimension 20
and 50. In contrast, we can see in Fig. 5.8 that for dimensions less than 10, the S.H.C.V.
method has a better error, with similar running time. For higher dimensions, however,
the orthonormal sampling is much faster, for a given error target.

Remark 5.9 : One may notice in Fig. 5.7b that both the S.H.C.V. method and the
Q.M.C. method with the s-Riesz points (R.R.) reach a plateau at around 103 projections.
Our hypothesis is that both methods have a better estimation of SW 2

2 than the simple
random sampling with 108 projections that we use as a ground truth. We test this
hypothesis in a simple case where SW 2

2 (µ, ν) can be computed explicitly. We define
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µ = 1
2
[δx1 + δx2 ] and ν = 1

2
[δy1 + δy2 ], with x1, x2 = (1, 0, 0)T , (0,−1, 0)T and y1, y2 =

(0, 0, 1)T , (0, 0,−1)T . Simple computation yields SW 2
2 (µ, ν) =

2(π−
√
2)

3π
(see Appendix C).

Knowing the true value of SW 2
2 (µ, ν), we find that with 104 points, the Q.M.C. method

with the s-Riesz points configuration and the S.H.C.V. methods already have errors one
order smaller that ones made by uniform sampling with 108 points.
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Figure 5.7: Comparison of convergence rate results for the studied sampling methods
(Gaussian data, Sec. 5.4.2).
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Figure 5.8: Distance estimation error as a function of computation time (seconds). Com-
putation times include the point generation as well as the SW 2

2 distance approximation.

Remark 5.10 : Note that for the running time curves, we do not include the s-Riesz
points configuration starting from the dimension 3 because it takes around 102 seconds
to generate 103 points and 9× 103 seconds to generate 104 points. However, observe that
those points, once generated, can be stored once for all to compute other SW 2

2 distances
or any other Monte Carlo estimation problems for functions defined on the unit sphere.
This means that these configurations should not be discarded by default. For practical
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applications where the number of SW 2
2 distances to compute is large, the computing time

for these configurations can be factorized by the number of distances to compute and
hence could become a negligible factor when the sampling number is moderate.

Remark 5.11 : Recalling the running time complexity O(TM2) in paragraph 5.3.2.2.2
and the running time results above, this shows that one needs to spend 9×107 seconds to
generate 106 points. This demonstrates the limitation of this sampling method in terms
of scalability, in other words when one needs a very large sampling number.

5.4.3 Persistence diagrams reduction dimension score

The goal of this section is to evaluate the relevance of the sampling methods studied in
Sec. 5.3, in the context of a concrete use case, involving two-dimensional real-life datasets.
For that, we focus in this section on persistence diagrams, we refer again to Sec. 2.3 for a
reminder of persistence diagrams (Fig. 5.9) .

Recall that two persistence diagrams can have a different number of points, so to
make it a balanced transport problem one has to augment them. Formally, denoting

d1 = 1
K1

K1
∑

k=1

δxk , d2 = 1
K2

K2
∑

k=1

δyk the diagrams, and noting ∆d1 = 1
K1

K1
∑

k=1

δπ∆(xk), ∆d2 =

1
K2

K1
∑

k=1

δπ∆(yk) their projections on the diagonal ∆, one considers µ = 1
K
[K1d1+K2∆d2 ] and

ν = 1
K
[K2d2+K1∆d1 ] as input measures with K = K1+K2. Then the Sliced Wasserstein

distance can be used to compare persistence diagrams as detailed by [41]. Also, the
Wasserstein distance between persistence diagrams is equivalent to the Sliced Wasserstein
distance using Prop. 2.14 and Bonnotte’s result [29] (Theorem 5.1.5). Denoting WD

2 and
W2 the 2-Wasserstein distance for diagrams squared and the usual 2-Wasserstein distance
between probability measures, recall the equivalence result we showed in Prop. 2.14:

WD,2
2 (D1, D2) ≤ W 2

2 (D1, D2) ≤ 2WD,2
2 (D1, D2),

where D1, D2 are augmented diagrams. Bonnotte’s result [29] states the following:

Proposition 5.7 : There exist a constant Cd,2 > 0 such that for all probability measures
µ, ν on a compact ball of radius R of Rd,

SW 2
2 (µ, ν) ≤ W 2

2 (µ, ν) ≤ Cd,2R
2−1/(d+1)SW2(µ, ν)

1/(d+1).

Aggregating the inequalities, for the case of augmented persistence diagrams (by consid-
ering them as discrete measures on a bounded ball of radius R), we have:

1

2
SW 2

2 (µ, ν) ≤ WD,2
2 (D1, D2) ≤ C2,2R

5/3SW2(µ, ν)
1/3.

We present dimensionality reduction results on 12 ensembles of persistence diagrams [148]
described in [149], which original scalar fields include simulated and acquired 2D and 3D
ensembles from SciVis constests [133]. The dimensionality reduction techniques used are
MDS [102] and t-SNE [189] applied on distance matrices obtained by the SW estimations
between the persistence diagrams. For a given technique, one quantifies its ability to
preserve the cluster structure of an ensemble by running the k-means algorithm in the
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Figure 5.9: A simple example of a persistence diagram issued from a gaussian mixture
(left). On the right one can see that the persistence diagram is stable to the addition of
noise.

resulting 2D-layouts. Then one evaluates the quality of the clustering with the normalized
mutual information (NMI) and adjusted rand index (ARI), which should both be equal
to 1 for a clustering that is identical to the classification ground-truth. Tab. 5.4 shows
the average clustering scores of both MDS [102] and t-SNE [189]. First we take the
average from distance matrices made by each SW 2

2 estimates on all sampling number
{100, 1100, 2100, 3100, 4100, 5100, 6100, 7100, 8100, 9100, 10100}. Then we average again
over all the 12 different ensembles of persistence diagrams. One can see that all the
methods are quite similar. But overall the s-Riesz points configuration, which are just
the M -th unity roots up to a rotation, is slightly better.

Table 5.4: Average NMI and ARI scores for over all 12 ensembles of persistence diagrams.

Method MDS NMI t-SNE NMI
Riesz 0.74 0.65
Uniform 0.74 0.59
Orthonormal 0.75 0.63
Halton 0.74 0.58

Method MDS ARI t-SNE ARI
Riesz 0.64 0.51
Uniform 0.64 0.44
Orthonormal 0.64 0.48
Halton 0.63 0.41

5.4.4 3D Shapenet 55Core Data

This part details convergence results on a 3D dataset commonly used as a benchmark
when studying shape comparison techniques. So as in [127] and [109], we took three
3D point clouds issued from the ShapenetCore dataset introduced by [43]. Among the
different shapes in the dataset, we took one lamp, one plane and one bed; with all three
of them having K = 2048 points. Fig. 5.10 displays the three datasets considered for this
experiment.

Fig. 5.11 shows different convergence curves of Sliced Wasserstein estimates between
the three point clouds. As in Sec. 5.4.2, the methods dominating are the Q.M.C.,
R.Q.M.C., S.S.W. and S.H.C.V. methods, especially the s-Riesz points configuration and
the Spherical Sliced Wasserstein sampling.

5.4.5 MNIST reduction dimension score

The goal of this section is twofold. First, it evaluates the practical convergence of the
studied sampling methods on real-life high-dimensional datasets. Second, it describes an
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Figure 5.10: The three point clouds taken from the ShapenetCore dataset (a plane, a
lamp and a bed).
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Figure 5.11: Comparison of convergence rate results from the different sampling methods.
The first plot shows errors made with respect to the SW 2

2 distance between a lamp and
a plane. The second one is between a plane and a bed. The last one corresponds to SW 2

2

between a plane and a bed.

application of the SW distance for high-dimensional data, namely, dimensionality reduc-
tion. For this, we select the classical MNIST dataset [107]. To construct our dataset, we
represent each digit image as a point in R28×28. For each class {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
we select randomly 600 digit images and divide them into groups of 200. This results
in 30 point clouds of 200 points each, in R28×28, with 10 ground-truth classes. Fig. 5.12
illustrates the 30×30 matrix of SW distances between all point clouds in the dataset. We
use MDS and t-SNE to produce 2D layouts from the distance matrices generated by the
various sampling methods with different sample sizes. We then apply a clustering algo-
rithm to these 2D layouts and average the clustering scores (NMI and ARI, see Sec. 5.4.3)
on all sampling numbers for all the studied sampling strategies. Results are provided
in Tab. 5.5. In such high dimension (d = 784), we see that the performance of L.D.S.
collapse, the three sampling methods standing out being the s-Riesz points configuration,
the uniform sampling and the orthonormal sampling.

110



5.5. Application to a dictionary encoding method of persistence diagrams

Figure 5.12: Sliced Wasserstein distance matrix of our dataset using 106 projections. All
10 classes, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, of 3 members each are well represented in the matrix.

Table 5.5: Average NMI and ARI scores with standard deviation. Higher scores corre-
spond to better clustering.

Method MDS NMI t-SNE NMI
Riesz 1 ± 0. 0.98 ± 2e-2
Uniform 1 ± 0. 0.97 ± 4e-2
Orthonormal 1 ± 0. 0.98 ± 3e-2
Halton 0.91 ± 1e-1 0.91 ± 9e-2
S.S.W. 1 ± 0. 0.98 ± 4e-2

Method MDS ARI t-SNE ARI
Riesz 1 ± 0. 0.95 ± 7e-2
Uniform 1 ± 0. 0.91 ± 1e-1
Orthonormal 1 ± 0. 0.94 ± 8e-2
Halton 0.75 ± 2e-1 0.76 ± 2e-1
S.S.W. 1 ± 0. 0.94 ± 1e-1

5.5 Application to a dictionary encoding method of

persistence diagrams

In Chapt. 3, we introduced our Wasserstein dictionary method, and the main compu-
tational time bottleneck lies on the computations of the Wasserstein distances and the
Wasserstein barycenters. One way to tackle this time bottleneck would be using the Sliced
Wasserstein distance instead of the Wasserstein distance.

This part details how the Sliced Wasserstein distance can be used for a Wasserstein
dictionary framework, or in this case a Sliced Wasserstein dictionary framework for persis-
tence diagrams. The core of our dictionary method is the Wasserstein barycenter, thus we
need a Sliced Wasserstein barycenter [28]. In this part, we reprise the notation introduced
in Chapt. 3, where we enumerate a persistence diagram X as X = {x1, . . . , xK}.
Definition 5.7 : Given λ = (λ1, . . . , λm) barycentric coefficients and denoting D =
{a1, . . . , am} augmented diagrams persistence diagrams, the Sliced Wasserstein barycenter
is defined as

Y ∗ ∈ argminE(Y ) =
m
∑

i=1

λiSW
2
2 (Y, ai). (5.18)

The energy minimized in Eq. 5.18 is smooth, i.e it is C1 and its gradient is Lipschitzian
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with:

∇E(Y ) =
m
∑

i=1

λi

∫

S1













⟨y1, θ⟩
...

⟨yK , θ⟩






−







⟨aτθ◦σθ,i(1)i , θ⟩
...

⟨aτθ◦σθ,i(K)
i , θ⟩












θTds1(θ), (5.19)

Y being a persistence diagram, and τθ and σθ,i permutations of J1, KK which respectively
orders Y and ai on the line of angle θ.

Still the energy in Eq. 5.18 is non-convex [28], thus to compute a local minimum, one
has to use a gradient descent scheme. However, in order to implement numerically this
descent, one has to approximate the integral in Eq. 5.19 by a Monte-Carlo approximation
(or quasi Monte-Carlo). More precisely, denoting θ1, . . . , θM angles sampled on the unit
circle S1 Eq. 5.18 becomes

Eθ1,...,θM (Y ) =
m
∑

i=1

λi
M

M
∑

j=1

W 2
2 (πθj#Y, πθj#ai). (5.20)

Following Eq. 5.20, we can compute a gradient analogous to Eq. 5.19 and implement a
simple gradient descent scheme with gradient step 2 [28]. As for sampling the directions
θ1, . . . , θM , according to our previous discussion Sec. 5.6 and the experimental results
Sec. 5.4, just taking the M = 50 unity roots is sufficient for this task. Now that we have
a computable sliced Wasserstein barycenter, we can extend our Wasserstein dictionary
framework to a sliced Wasserstein dictionary framework. Take X1, . . . , XN input per-
sistence diagrams, we want to optimize D = {a1, . . . , am} a dictionary of m persistence
diagrams and Λ = λ1, . . . ,λN N vectors of barycentric coefficients of size m minimizing:

E(Λ,D) =
N
∑

n=1

SW 2
2

(

YSW (λn,D), Xn

)

, (5.21)

with YSW (λn,D) denoting the sliced Wasserstein barycenter of λn and D. Unfortunately,
unlike Chapt. 3, the sliced Wasserstein distance does not yield any optimal transport
plans, nor the points in the barycenter YSW (λn,D) have an analytic formula (like in
Chapt. 4). Thus, in practice to optimize E in Eq. 5.21, as in Chapt. 4, we have to use
the automatic differentiation implemented in Pytorch, with Adam [98] as the optimizer.

Also, in Chapt. 4, we motivated the utilization of an alternate framework computing a
robust Wasserstein barycenter based on a Wasserstein distance using a generic cost, more
precisely using Wq for q ∈]1, 2[ instead of W2. However, the Sliced Wasserstein barycenter
does not benefit this change. Indeed, recall that the 1D Wasserstein distance is purely
obtained by sorting the elements on R in the discrete case. In particular, this means that
the transport plan are exactly the same for all Wq, q ∈ [1,+∞). Thus the notion of a
robust barycenter does not apply for the Sliced Wasserstein distance.

5.6 Recommendation & summary

In this chapter, we have studied several sampling strategies on the sphere for computing
an approximation of the Sliced Wasserstein distance.
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Regarding theoretical guarantees, this study highlighted the following limitations. The
classical i.i.d. sampling benefits from theoretical guarantees with a convergence rate in
O(1/

√
M) and a time complexity linear in the number M of projections. Orthonormal

sampling and L.D.S. such as Halton or Sobol lack convergence rate guarantees on the
sphere (these guarantees being only obtained for sequences on hypercubes for L.D.S). As
for deterministic point generation methods (like Riesz), the Sliced Wasserstein integrand
also lacks sufficient regularity to guarantee results in dimensions higher than 2.

While lacking theoretical guarantees in terms of convergence, the experimental study
suggests that Q.M.C methods (L.D.S. or s-Riesz points) provide competitive results in
small to intermediate dimension, while having a similar convergence rate to classical ran-
dom sampling methods in intermediate to higher (for Riesz) dimensions. These results
seem to indicate that, while f is not regular enough for the convergence guarantees de-
tailed in this chapter, there may be some non-proven convergence results requiring weaker
regularity conditions that would be applicable to SW .

Now, considering computation times, as shown by Fig. 5.8 and Tab. 5.2, classical i.i.d.
sampling remains the slowest method in all our experiments. While orthonormal sampling
lacks theoretical guarantees, it seems to be one of the most efficient methods whatever
the dimension, and is particularly competitive in high dimensions, with a very reasonable
increase of computation time. L.D.S. methods also remain competitive in practice for
small dimensions. s-Riesz points, while competitive in terms of convergence rate, have
a prohibitive time complexity in O(M2), which makes them completely unsuitable for a
large number of projections.

The experiments also suggest that the S.H.C.V. method is very competitive in inter-
mediate dimensions, while becoming less efficient when d increases.

Based on the different experimental results provided in this chapter, we make the
following recommendations:

• For small dimensions (less than 3), Q.M.C. methods such as s-Riesz points or L.D.S.
mapped onto the sphere can be privileged with respect to uniform sampling.

• For high dimensions (greater than 20), the orthonormal sampling method emerges
as the most suitable choice. It is also one of the simplest methods to implement,
which makes it particularly attractive in practice.

• For intermediate dimensions (between 5 and 10), choosing an appropriate method
should depend on the experimental requirements. Spherical harmonics are an excel-
lent option if computational resources are limited and if the number of SW distances
to be computed is low. However, it is worth noting that some Q.M.C. strategies,
being independent of the input measures, have the advantage of allowing the gener-
ated points to be reused and of allowing an independent computation in M (except
the Riesz points). This should be particularly beneficial when a high number of
projections is required and a large number of SW distances must be computed. In
such cases, we suggest to store the samples to factorize the computing time across
experiments.
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Chapter 6

Conclusion and perspectives

In this thesis, we developed and studied an analysis and lossy compression method for en-
sembles of topological representations, based on barycenters. The goal of this method is to
facilitate the analysis of ensembles of scalar fields using their topological representations,
while simultaneously addressing the main challenges posed by modern data: increasing
size and geometrical complexity. These topological representations already address these
challenges by encapsulating the topological information concisely. This work extends this
approach by finding a compact representation of topological representations while pre-
serving the analysis results of scalar field ensembles. These results are presented visually
to end users, providing clear, simple, and concise insights about a data ensemble.

6.1 Summary of contributions

The contributions of this thesis propose solutions for finding concise representations of
an ensemble of topological representations, ranging from the conception of the method,
to providing an extension for stability reasons, and finally offering an alternative to ad-
dress computational time considerations. All contributions presented in this thesis are
implemented either in the open-source library Topology ToolKit [184] or in Python [69].

6.1.1 Wasserstein Dictionaries of Persistence Diagrams

A Wasserstein barycenter is a well-known representative of an ensemble of persistence
diagrams. However, while it provides global information on the main structures in an
ensemble of persistence diagrams, it cannot describe the variability within the ensemble.
We addressed this problem in Chapt. 3 by proposing a Wasserstein dictionary encoding
method, which consists of finding a smaller set of representative diagrams and barycentric
coefficients to generate barycenters that approximate each member of an ensemble of per-
sistence diagrams. Each barycenter should share the same topological pattern profile as
a member of the input ensemble of persistence diagrams. We first proposed a simple op-
timization algorithm, based on alternating gradient descent with gradient steps updated
automatically. However, the optimization problem is neither convex nor continuous, lead-
ing to instabilities without further improvements.

We overcame these obstacles by introducing a persistence-based multi-scaling ap-
proach. This approach allows our method to focus heavily on the high-persistence pairs,
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thereby biasing the gradient descent toward a convex region. It also accelerates the initial
algorithm and generally produces better results.

We demonstrated the utility of this method with applications such as data reduction
and dimensionality reduction.

6.1.2 Robust Barycenters of Persistence Diagrams

While widely used for its descriptive power and its ability to summarize the topological
profile of an ensemble of persistence diagrams, a Wasserstein barycenter can be sensitive
to the presence of outliers in the ensemble. Indeed, a Wasserstein barycenter—also called
a Fréchet mean—behaves like an arithmetic mean and, as such, inherits the drawback
of being sensitive to outliers. Consequently, this sensitivity can introduce optimization
difficulties in our Wasserstein dictionary method. To address this problem, we proposed
using an alternative framework to compute a Wasserstein barycenter with general function
costs. This new framework operates as a fixed-point algorithm and produces a barycenter
that is robust to the presence of outliers in an ensemble of persistence diagrams. We
demonstrated the robustness of these barycenters through applications to classical clus-
tering problems of persistence diagrams and by incorporating this robust barycenter into
our Wasserstein dictionary encoding method.

6.1.3 A User’s Guide to Sampling Strategies for Sliced Optimal

Transport

Another downside of a Wasserstein barycenter is its computational time bottleneck.
This arises from the fact that the Wasserstein distance has a runtime complexity of
O
(

N3 log(N)
)

, where N is the size of the two persistence diagrams. To address this,
we considered an alternative called the Sliced Wasserstein distance, defined as the av-
erage of 1D Wasserstein distances of measures projected onto lines sampled from the
hypersphere. In practice, this distance is usually computed using a Monte Carlo method
and has a runtime complexity of O

(

MN log(N)
)

, where M is the number of lines sampled
from the hypersphere. We provided a general user guide to different sampling strategies
for Monte Carlo and quasi-Monte Carlo methods to compute the Sliced Wasserstein dis-
tance, including comparisons of theoretical and experimental results. In particular, we
demonstrated that computing the Sliced Wasserstein distance between persistence dia-
grams—and, consequently, computing a Wasserstein barycenter—is both simple and fast.
We also detailed how this Sliced Wasserstein barycenter can be applied to the dictionary
encoding problem for an ensemble of persistence diagrams.

6.2 Discussion

Limitations regarding the different contributions of this thesis were already presented in
the dedicated chapters. However, we would like to further detail some limitations of our
work and possible solutions to address them.

A crucial limitation of our first work is the non-convexity and non-differentiability of
the functional optimized for the dictionary encoding of persistence diagrams (Chapt. 3).
These characteristics of the functional led us to introduce a multi-scaling approach to our
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original algorithm. Another possible way to address this issue would be to use a regular-
ized version of the optimization problem, as in [167]. This regularization, called the en-
tropic optimal transport problem, is usually solved using the Sinkhorn algorithm [48,104].
However, this regularization can only be applied to histograms, meaning that the persis-
tence diagrams must be vectorized [4,104]. While this regularization method can simplify
the optimization scheme and reduce computational time, it depends on parameters, and
vectorized persistence diagrams cannot be visually interpreted or analyzed.

Another approach would be to fix the optimal transport plans during the optimization
scheme. At fixed transport plans, the energy is locally convex and differentiable (even
C∞) (Appendix A and Appendix B), ensuring a steady descent toward a local minimum.
However, this method can lead to a "bad" local minimum, as fixing the transport plans
prevents the optimization algorithm from exploring other locally convex regions. A further
alternative would be to use a stochastic gradient descent method, typically employed when
the functional is not convex. Such a method allows the optimizer to explore other regions
and potentially find a better local minimum than the one reached initially. Unfortunately,
in our case, the computation of new barycenters between each gradient step already
changes the optimal transport plan, effectively simulating the same behavior as stochastic
gradient descent.

Another limitation concerns the time and memory bottlenecks of computing the ro-
bust barycenter (Chapt. 4). Indeed, the computation of this barycenter still relies on
Wasserstein distances with runtime complexities of O

(

N3 log(N)
)

. Moreover, our imple-
mentation in PyTorch requires a GPU with sufficient dedicated VRAM, meaning that
computing robust barycenters of persistence diagrams with a large number of points
(>10,000) can be challenging. One way to alleviate these bottlenecks would be to in-
troduce a persistence-driven progressive approach, as in [173, 191]. A persistence-based
progressive approach focuses solely on the high-persistence pairs of a persistence diagram.
These high-persistence pairs, which generally represent the important topological fea-
tures, are typically present in small numbers (<50). Thus, computation could focus on
the high-persistence pairs while providing a rough approximation of the barycenter for
the low-persistence pairs. However, as we observed in Chapt. 3, the main structures of
interest can sometimes be encoded in the small-persistence pairs, while noise in the orig-
inal data can appear in high-persistence pairs. Although such situations are uncommon,
they have been reported in the literature [4, 56].

6.3 Perspectives

6.3.1 Generalization to other topological representations

A natural direction for future work is the extension of the methods explored in this thesis
to other topological representations such as merge trees, contour trees, Reeb graphs, or
Morse-Smale complexes. These topological representations capture information that is
not represented by persistence diagrams, so generalizing the methods explored here could
lead to improved results.

First, a generalization of the robust barycenter framework to merge trees seems feasi-
ble. Indeed, [149] already defined a Wasserstein distance between merge trees, and conse-
quently introduced a notion of Wasserstein barycenters for merge trees. This Wasserstein
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distance is analogous to the 2-Wasserstein distance between persistence diagrams. There-
fore, using a Wasserstein distance with a generic transportation cost should be feasible
in theory and in practice, and defining a robust barycenter for merge trees could be a
natural future result. Naturally, since Wasserstein barycenters of merge trees are already
defined, an extension of our Wasserstein dictionary framework to merge trees could also
be possible. As methods for finding concise representations of ensembles of merge trees
are already established [112, 150], we believe that adapting our Wasserstein dictionary
encoding framework to merge trees should be achievable.

However, the same cannot be said for the other topological descriptors, as defining
informative and computable metrics remains an open research problem. One possibility
for contour trees would be to extend the edit distance [99]. Yet, defining such a metric
does not guarantee the existence of computable transport plans or barycenters, which are
necessary for our Wasserstein dictionary framework.

6.3.2 Theoretical studies on the convex areas of the functional in

the Wasserstein dictionary framework

As discussed earlier, one of the main limitations we encountered was the non-differentiability
and non-convexity of the functional optimized in Chapt. 3. Unfortunately, we could not
fully characterize the regions of differentiability of this functional, as this is not a central
topic in the context of this thesis. However, based on several experiments run on toy
datasets, we observed certain structures in the birth/death space when the number of
atoms is equal to three. We know that the lack of differentiability is caused by changes
in the optimal transport plans between the barycenters and the atoms in the dictionary.
In other words, the triangle from which each point of the barycenter originates changes.

From our observations, we hypothesize that the Delaunay triangulation [51] provides
the structure subdividing the birth/death space, delimiting regions where the optimal
transport plans remain constant. Based on this assumption, one idea would be to compute
the dual Voronoi diagram [193], color each triangle according to the corresponding optimal
transport plan, then select the color yielding the best energy after each gradient step before
updating the barycenter. An obvious drawback of this approach is its runtime complexity,
since computing a Delaunay triangulation and a Voronoi diagram is computationally
expensive. Thus, for large persistence diagrams this method is not feasible, but for small
persistence diagrams it could be a potential solution. Of course, this is based solely on
the assumption that the underlying structure is indeed a Delaunay triangulation.

6.3.3 Further applications of the Wasserstein dictionary frame-

work

State-of-the-art methods for classical supervised dictionary encoding have several applica-
tions, such as inpainting and denoising. In other words, dictionary-based representations
can be used for image or video restoration. The Wasserstein dictionary framework, orig-
inally established on histograms by [167] and inspired by these methods, could similarly
be used to restore persistence diagrams that are missing in a time series. Recent methods
based on dictionary encoding have also been developed for this purpose, such as deep dic-
tionary learning [169]. The principle of this method is to combine the concept of dictionary
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representation with deep networks, by using a dictionary as a neuron within a multi-layer
network. Such an approach could potentially be adapted to persistence diagrams. For
instance, classical auto-encoders have already been extended to merge trees (and persis-
tence diagrams) by [147], by generalizing their principal geodesic analysis framework [150].
Thus, we assume that a similar generalization of the Wasserstein dictionary framework to
persistence diagrams is feasible. However, one obvious drawback of such a method would
be its computational cost, as noted in [147].
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Appendices

Appendix A: Dimensionality reduction

Fig. .1 extends Fig. 3.7 to all our test ensembles and it confirms visually the conclusions
of the table of quality scores (Table 3).

Figure .1: Comparison of the planar layouts for typical dimensionality reduction tech-
niques on all our test ensembles. The color encodes the classification ground-truth [149].
For each quality score, the best value appears bold. For the Sea Surface Height ensemble,
the naive optimization procedure has been used (cf. Sec. 6.3).
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Appendix B: Volcanic eruption ensemble

This appendix discusses the special case of the Volcanic eruption ensemble (12 mem-
bers), for which a consistent energy increase can be observed in the Figure 13 of the main
manuscript (normalized energy of our multi-scale optimization as a function of compu-
tation time), beyond 70% of the completion time (the optimization reaches the stopping
conditions at 100%).
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Figure .2: Evolution of the (normalized) energy ED along the optimization (top curves),
with our multi-scale strategy, for the Volcanic eruption ensemble, for distinct initializa-
tions. The ground-truth classification of this ensemble contains 3 classes [149], including
one outlier (light purple entry in the bottom views, from left to right: terrain view of
the data, aggregated birth/death space, distance matrix). A clear energy increase can be
observed when considering the entire ensemble (black curve), while a more characteristic
oscillating behavior occurs when discarding the outlier (green curve). When initializing
the optimization with 4 atoms (1 per class, plus 1 for the outlier), the optimization results
in few oscillations and a consistent energy decrease (yellow curve).
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The ground-truth classification of this ensemble contains 3 classes [149]. However, one
of these classes contains a clear outlier (light purple entry in the bottom views of Fig. .2),
corresponding to a peak of activity in the eruption (see the terrain views of 4 members,
bottom left of Fig. .2, including the outlier, light purple frame). The corresponding
persistence diagram (light purple diagram in the aggregated birth/death space, bottom
middle of Fig. .2) contains features which are significantly more persistent than the other
diagrams (taken from distinct ground-truth classes, one color per class). Then, this outlier
exhibits an excessively high distance to the rest of the ensemble, as illustrated in the
Wassertein distance matrix (bottom right of Fig. .2, light purple entry).

The presence of this outlier challenges our optimization when using a number of atoms
equal to the number of ground-truth classes (which is the default strategy documented
in the main manuscript). As shown in the energy plots (Fig. .2, top), a consistent energy
increase can be observed when using only 3 atoms (1 per ground-truth class, black curve).
When removing the outlier, the energy evolution exhibits a more characteristic oscillating
behavior (green curve). Finally, when initializing the optimization with 4 atoms (1 per
class, plus 1 for the outlier), the optimization results in few oscillations and a consistent
energy decrease (yellow curve). This indicates that the outlier member (light purple)
should be interpreted as a singleton class and that the best dictionary encoding will
consequently be obtained with 4 atoms.

Appendix C: Explicit computation of SW (µ, ν) in a sim-

ple case

We define µ = 1
2
[δx1 + δx2 ] and ν = 1

2
[δy1 + δy2 ], with x1, x2 = (1, 0, 0)T , (0,−1, 0)T and

y1, y2 = (0, 0, 1)T , (0, 0,−1)T . Now let us find the four sections (as in Fig. 5.2), for which
the ordering of ⟨θ, x1⟩ with ⟨θ, x2⟩ and ⟨θ, y1⟩ with ⟨θ, y2⟩ is fixed.

Let us write θ =





sin(φ)cos(χ)
sin(φ)sin(χ)

cos(φ)



 in spherical coordinates with φ ∈ [0, π] and χ ∈ [0, 2π].

Let θ ∈ Sd−1, we have

⟨θ, x1⟩ ≥ ⟨θ, x2⟩ ⇐⇒ sin(φ)
(

cos(χ) + sin(χ)
)

≥ 0 ⇐⇒ sin(φ) ≥ 0 and cos(χ) + sin(χ) ≥ 0

⇐⇒ χ ∈ [0, 3π/4] ∪ [7π/4, 2π] = A,

and ⟨θ, y1⟩ ≥ ⟨θ, y2⟩ ⇐⇒ φ ∈ [0, π/2] = B. Denoting Ac the complement of A in [0, 2π]
and Bc the complement of B in [0, π], the Sliced Wasserstein distance simply writes:

SW 2
2 (µ, ν) =

1

8π

∫

Ac

∫

Bc

(

⟨θ, x1 − y1⟩2 + ⟨θ, x2 − y2⟩2
)

sin(φ)dφdχ

+
1

8π

∫

Ac

∫

B

(

⟨θ, x1 − y2⟩2 + ⟨θ, x2 − y1⟩2
)

sin(φ)dφdχ

+
1

8π

∫

A

∫

Bc

(

⟨θ, x2 − y1⟩2 + ⟨θ, x1 − y2⟩2
)

sin(φ)dφdχ
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+
1

8π

∫

A

∫

B

(

⟨θ, x2 − y2⟩2 + ⟨θ, x1 − y1⟩2
)

sin(φ)dφdχ.

From there, simple integral computations yield SW 2
2 (µ, ν) =

2(π −
√
2)

3π
.
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Abstract

Topological Data Analysis (TDA) is a family of techniques developed to efficiently
and robustly highlight implicit structural patterns in complex datasets. These techniques
involve computing a topological descriptor for each element of a dataset by encoding its
main topological features in a concise manner. A prominent example is the persistence
diagram. However, even though they are concise representations, persistence diagrams
can still require significant storage space and may be too complex to be analyzed easily.
In this thesis, our goal is to develop an encoding method for ensembles of persistence
diagrams while maintaining the same descriptive power. First, we develop a non-linear
dictionary encoding for persistence diagrams. Then, we strengthen our approach by mak-
ing it more robust to outliers within an ensemble of persistence diagrams by using robust
barycenters. This dictionary-based approach involves computing Wasserstein distances,
which are known to be computationally expensive depending on the size of the input
diagrams. One way to address this problem is through Sliced Optimal Transport, more
specifically the Sliced Wasserstein distance. We present applications of this work in data
reduction to further compress an ensemble of persistence diagrams; in dimensionality re-
duction by creating a planar view that provides insight into the arrangement of the data;
and in robustness to outliers in the context of a clustering problem.

Résumé

L’analyse topologique des données est un ensemble de techniques développées pour
mettre en évidence, de manière efficace et robuste, des structures implicites dans des
ensembles de données complexes. Ces techniques consistent à calculer un descripteur
topologique pour chaque élément d’un jeu de données, en encodant ses principales ca-
ractéristiques topologiques de manière concise. Un exemple couramment utilisé est le
diagramme de persistance. Cependant, bien qu’il s’agisse de représentations concises, les
diagrammes de persistance peuvent nécessiter un espace de stockage important et être
parfois trop complexes pour être analysés simplement. Dans cette thèse, notre objectif
est de développer une méthode d’encodage pour des ensembles de diagrammes de per-
sistance tout en conservant leur pouvoir descriptif. Nous commençons par développer un
encodage non linéaire par dictionnaire pour les diagrammes de persistance. Nous renfor-
çons ensuite notre approche en la rendant plus robuste aux valeurs aberrantes au sein
d’un ensemble de diagrammes de persistance, en utilisant des barycentres robustes. Cette
approche par dictionnaire implique le calcul de distances de Wasserstein, connues pour
être coûteuses en temps de calcul en fonction de la taille des diagrammes en entrée. Une
façon de contourner ce problème consiste à utiliser le transport optimal par tranches, plus
précisément la distance de Wasserstein tranchée (Sliced Wasserstein). Nous présentons
des applications de ce travail à la réduction de données pour compresser davantage un
ensemble de diagrammes de persistance ; à la réduction de dimension en créant une vue
planaire donnant un aperçu de la disposition des données ; et à la robustesse aux valeurs
aberrantes dans le cadre d’un problème de regroupement non supervisé.
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